Những câu hỏi liên quan
VT
Xem chi tiết
VT
21 tháng 10 2021 lúc 10:26

mn ơi  giúp em

Bình luận (0)
NM
21 tháng 10 2021 lúc 10:30

Bài 3:

\(a,=3x\left(y-4x+6y^2\right)\\ b,=5xy\left(x^2-6x+9\right)=5xy\left(x-3\right)^2\\ d,=\left(x+y\right)\left(x-12\right)\\ f,=2x\left(x-y\right)\left(5x-4y\right)\\ g,=\left(x-2\right)\left(x-2+3x\right)=\left(x-2\right)\left(4x-2\right)=2\left(x-2\right)\left(2x-1\right)\\ h,=x^2\left(1-5x\right)+3xy\left(5x-1\right)=x\left(1-5x\right)\left(x-3y\right)\\ i,=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\\ j,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ k,=4x^2-12x+3x-9=\left(x-3\right)\left(4x+3\right)\\ l,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ m,=x^2-\left(2y-6\right)^2=\left(x-2y+6\right)\left(x+2y-6\right)\\ n,=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-25\\ =\left(x^2+5x\right)\left(x^2+5x+10\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)

Bình luận (2)
H24
21 tháng 10 2021 lúc 10:59

Bài 3:

a)3xy-12x2+24xy2=3x(y-4x+8y2)

b)5x3y-30x2y+45xy=5xy(x2-6x+9)=5xy(x-6x+32)=5xy(x-3)2

d)x(x+y)-12x-12y=x(x+y)-(12x+12y)=x(x+y)-12(x+y)=(x+y)(x-12)

f)10x2(x-y)-8xy(x-y)=(x-y)(10x2-8xy)

g)(x-2)3+3x2-6x=(x-2)3+(3x2-6x)=(x-2)3+3x(x-2)=(x-2)[(x-2)+3x]=(x-2)(x-2+3x)=(x-2)(4x-2)

h)x2+15x2y-3xy-5x3=(x2-3xy)+(15x2y-5x3)=x(x-3y)+5x2(3y-x)=x(x-3y)-5x2(x-3y)=(x-3y)(x-5x2)

i)x2-2x-8+4x=(x2-2x)+(4x-8)=x(x-2)+4(x-2)=(x-2)(x+4)

k)4x2-9x-9=4x2+3x-12x-9=(4x2+3x)-(12x+9)=x(4x+3)-3(4x+3)=(4x+3)(x-3)

l)x2-y2+10x+25=(x2+10x+25)-y2=(x2+10x+52)-y2=(x+5)2-y2=[(x+5)+y][(x+5)-y]=(x+5+y)(x+5-y)

m)x2-4y2+24y-36=x2-(4y2-24y+36)=x2-[(2y)2-24y+62]=x2-(2y-6)2=[x+(2y-6)][x-(2y-6)]=(x+2y-6)(x-2y+6)

n)(không biết làm)

Bình luận (0)
LP
Xem chi tiết
MY
3 tháng 8 2021 lúc 6:02

 \(=>Qthu1=0,2.340000=68000J\)

\(=>Qthu2=2100.0,2.20=8400J\)

\(=>Qtoa=2.4200.25=210000J\)

\(=>Qthu1+Qthu2< Qtoa\)=>đá nóng chảy hoàn toàn

\(=>0,2.2100.20+0,2.340000+0,2.4200.tcb=2.4200\left(25-tcb\right)\)

\(=>tcb=14,5^oC\)

Bình luận (1)
QD
Xem chi tiết
TP
Xem chi tiết
NL
21 tháng 4 2021 lúc 22:51

2b.

\(Q=\dfrac{cosx}{sinx}+\dfrac{sinx}{1+cosx}=\dfrac{cosx\left(1+cosx\right)+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx\left(1+cosx\right)}=\dfrac{1}{sinx}\)

4b.

\(\Delta\) có 1 vtpt là (3;-4)

Gọi d là đường thẳng qua M và vuông góc \(\Delta\Rightarrow d\) nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x-4\right)+3\left(y+2\right)=0\Leftrightarrow4x+3y-10=0\)

H là giao điểm d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-4y+5=0\\4x+3y-10=0\end{matrix}\right.\) \(\Rightarrow H\left(1;2\right)\)

Bình luận (0)
NK
Xem chi tiết
SD
Xem chi tiết
H24
Xem chi tiết
1N
Xem chi tiết
NT
22 tháng 10 2023 lúc 19:04

36B

37C

38D

39B

40D

41A

42B

43B

44A

45B

46B

47A

48C

50B

51B

52B

53D

54C

55D

56C

 

Bình luận (0)
LA
Xem chi tiết
NT
1 tháng 3 2022 lúc 21:42

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

b: ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BC=6cm

nên BM=3cm

=>AM=4cm

d: Xét ΔABC cân tại A có AM là đường cao

nên AM là phân giác của góc BAC

Xét ΔABC có

AM là đường phân giác

BI là đường phân giác

AM cắt BI tại I

Do đó: CI là tia phân giác của góc ACB

Bình luận (2)
PD
1 tháng 3 2022 lúc 21:49

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

b: ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BC=6cm

nên BM=3cm

=>AM=4cm

d: Xét ΔABC cân tại A có AM là đường cao

nên AM là phân giác của góc BAC

Xét ΔABC có

AM là đường phân giác

BI là đường phân giác

AM cắt BI tại I

Do đó: CI là tia phân giác của góc ACB

Bình luận (1)
KL
1 tháng 3 2022 lúc 22:29

a) Xét 2 tam giác ABM và tam giác ACM:

Có: góc ABM= góc ACM (tam giác ABC cân) ; BM=MC và AM chung

 ==>tam giác ABM=tam giác ACM
b)Trong một tam giác cân, đường trung trực ứng với cạnh đáy cũng đồng thời là đường phân giác
Xét tam giác ABC cân và có AM là trung trực (M là tđ BC)

==> AM là đường cao Tam giác ABC

==> AM vuông góc BC

c)Có M là trung điểm BC

==> BM=MC=1/2 BC

Mà BC =6cm

==> BM=3cm

Áp dụng định lý Pitago trong tam giác ABM : Góc AMB=90 độ

==> AM^2+BM^2=AB^2
       AM^2+3^2=5^2
==> AM =4cm

d) Xét tam giác IMB và tam giác IMC : góc IMC=Góc IMB(=90 độ)

IM chung;BM=MC(gt)

==> Tam Giác IMB=Tam giác IMC (c.g.c)

==> góc IBM=góc ICM                        
Mà góc ABM=Góc ACM (gt)

==> góc ABI+IBM=góc ACI+ICM

mà góc IBM=góc ICM  

==> góc ABI= góc ACI

từ đó ==> góc ACM=ICM

==> CI là phân giác góc C

Bài của chị chỉ dùng tham khảo thôi nha ,có chỗ nào không hiểu thì nhắn lại nha!

Chúc em học tốt *\(^o^)/*

 

 

 

Bình luận (1)