Những câu hỏi liên quan
TT
Xem chi tiết
NH
13 tháng 7 2017 lúc 15:34

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

Bình luận (0)
PA
13 tháng 7 2017 lúc 15:37

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

Bình luận (1)
PA
13 tháng 7 2017 lúc 15:49

2b)

Biến đổi tương đương:

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow2a+2b\ge a+2\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

=> (1) đúng

Dấu "=" xảy ra khi a = b.

2c)

Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\) (đpcm)

Dấu "=" xảy ra khi a = b.

2d)

Áp dụng BĐT AM - GM, ta có:

\(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\) (đpcm)

Dấu "=" xảy ra khi a = 0

Bình luận (0)
MN
Xem chi tiết
TT
26 tháng 11 2017 lúc 22:31

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)

Bình luận (0)
MV
Xem chi tiết
NM
20 tháng 8 2021 lúc 16:18

\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Tick plz

Bình luận (0)
NT
20 tháng 8 2021 lúc 22:58

Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)

\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Bình luận (0)
H24
Xem chi tiết
LH
20 tháng 6 2021 lúc 20:24

a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\sqrt{\sqrt{a^2+2}.\dfrac{1}{\sqrt{a^2+2}}}=2\)

Dấu = xảy ra khi \(\sqrt{a^2+2}=\dfrac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2=-1\left(vn\right)\)

\(\Rightarrow\) Dấu "=" không xảy ra

Vậy \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

b)Với x,y>0,ta cm bđt phụ sau:

\(x^3+y^3\ge xy\left(x+y\right)\) (1)

Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)

\(\Leftrightarrow\cdot\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" xra khi a=b

Vậy...

Bình luận (0)
LM
Xem chi tiết
DT
13 tháng 7 2018 lúc 22:12

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

Bình luận (0)
H24
Xem chi tiết
NT
26 tháng 10 2022 lúc 16:14

\(VT=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b}{2\left(a-b\right)}+\dfrac{2b}{a-b}\)

\(=\dfrac{4\sqrt{ab}}{2\left(a-b\right)}+\dfrac{2b}{a-b}=\dfrac{2b+2\sqrt{ab}}{a-b}\)

\(=\dfrac{2\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 10 2021 lúc 0:15

a: \(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}-2b}{a-b}\)

\(=\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

Bình luận (0)
TH
Xem chi tiết
SN
Xem chi tiết
NT
23 tháng 5 2022 lúc 0:06

\(VT=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2b}{a-b}\)

\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Bình luận (0)