Những câu hỏi liên quan
HP
Xem chi tiết
BH
15 tháng 8 2018 lúc 21:24

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)

\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)

Bình luận (0)
MS
Xem chi tiết
H9
29 tháng 10 2023 lúc 10:47

\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)

\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)

\(=1\)

Bình luận (0)
OL
Xem chi tiết
NT
13 tháng 8 2020 lúc 10:41

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

Bình luận (0)
TD
Xem chi tiết
LM
22 tháng 2 2021 lúc 15:23

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 5 2021 lúc 15:38

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

Bình luận (0)
 Khách vãng lai đã xóa
PH
12 tháng 5 2021 lúc 15:58

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
AT
25 tháng 6 2018 lúc 13:20

Hỏi đáp Toán

Bình luận (1)
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 15:41

a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)

\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)

\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)

b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)

\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
8 tháng 4 2021 lúc 16:02

em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
3 tháng 5 2021 lúc 21:34
Bình luận (0)
 Khách vãng lai đã xóa
DB
Xem chi tiết
NA
14 tháng 8 2019 lúc 13:53

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=1-\sqrt{3}-\sqrt{3}-2\)

\(=-2\sqrt{3}-1\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+4-2\sqrt{3}\)

\(=6-3\sqrt{3}\)

Bình luận (0)
DE
14 tháng 8 2019 lúc 15:25

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(A=\sqrt{3}-1-\sqrt{3}-2\)

\(A=-3\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)

\(B=2-\sqrt{3}+\sqrt{3}-1\)

\(B=1\)

Bình luận (0)

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\sqrt{3}-1-\sqrt{3}-2\)

\(=-3\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)

\(=2-\sqrt{3}+\sqrt{3}-1\)

\(=1\)

Bình luận (0)
NH
Xem chi tiết
KH
Xem chi tiết