x+7/2020+x+6/2020+x+5/2020+3
*Thực hiện
1/ (\(\dfrac{2021}{2020}\)+\(\dfrac{2020}{2021}\)) x (\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\))
2/ (\(\dfrac{7}{19}\)-\(\dfrac{5}{12}\)):\(\dfrac{-5}{8}\)-(\(\dfrac{7}{19}\)-\(\dfrac{29}{12}\)):\(\dfrac{5}{8}\)
3/ \(\dfrac{-5}{6}\)x\(\dfrac{7}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{14}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{3}{24}\)
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
mink chịu bài này nó rất khó
1. 2019/2020-(2019/2020-2020/2021)
2.2/9+7/9 :(42/5-7/5
3.a)3/4+x/4=5/8
4./3x+1/-1/4=-1/4
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x+1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x+1\right|=0\)
\(3x+1=0\)
\(3x=0-1\)
\(3x=-1\)
\(x=-1:3\)
\(x=\dfrac{-1}{3}\)
Tìm x:
1,2x^3-50x=0
2, 5x^2-4(x^2-2x+1)-5=0
3, 6x(x-2)=x-2
4, 7(x-2020)^2-x+2020=0
5,x^2-10x=-25
6, x^2-2x-3=0
1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)
2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)
3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)
4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)
5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)
\(1,\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2,\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
\(3,\)
\(6x\left(x-2\right)=x-2\)
\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)
\(4,\)
\(7\left(x-2020\right)^2-x+2020=0\)
\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)
\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)
\(5,\)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(6,\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(2020^{2020}\times\left(7^{10}\times7^8-3\times2^4-2^{2020}\div2^{2020}\right)\)
Tìm x:
\(\frac{1}{2}\times x-\frac{3}{5}=\frac{-4}{5}\) B)\(\left(x-\frac{2}{3}\right)\div\frac{-3}{7}=\frac{-9}{14}\)
1/2.x-3/5=-4/5
1/2.x=-4/5+3/5
1/2.x=-1/5
x=-1/5:1/2
x=-2/5
kl:.....
câu đầu mik tính ra sốn to lắm
câu cuối mik tính ko chia hết nên chỉ làm đc câu giữa
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Bài 1: Tính giá trị của biểu thức sau
A=1-\(\dfrac{50-\dfrac{4}{2018}+\dfrac{2}{2019}-\dfrac{2}{2020}}{100-\dfrac{8}{2018} +\dfrac{4}{2019}-\dfrac{4}{2020}}\)
B=\(\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
C=\(x^{2020}\)-\(y^{2020}\)+\(xy^{2019}\)-\(x^{2019}\).y+2019 biết x-y=0
Mong mn giúp đỡ
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
tìm x biết
x+2/2020+x+2/2020=x+2019/3+x+2020/2
Lời giải:
$\frac{x+2}{2020}+\frac{x+2}{2020}=\frac{x+2019}{3}+\frac{x+2020}{2}$
$\frac{x+2}{2020}+1+\frac{x+2}{2020}+2=\frac{x+2019}{3}+1+\frac{x+2020}{2}+1$
$\frac{x+2022}{2020}+\frac{x+2022}{2020}=\frac{x+2022}{3}+\frac{x+2022}{2}$
$(x+2022)(\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2})=0$
Dễ thấy $\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2}<0$
Do đó: $x+2022=0$
$\Rightarrow x=-2022$
x+4/2020 +x+3/2020=x+2/2020+x+1/2023
x+4/2020+x+3/2020=x+2/2020+x+1/2023
x+x+4/2020+3/2020=x+x+2/2020+1/2023
2x+7/2020=2x+2/2020+1/2023
2x-2x=-7/2020+2/2020+1/2023( quy tắc chuyển vế)
0x=7/2020+2/2020+1/2023
bất kì số nguyên, số thập phân hay phân số nào nhân với 0 điều bằng 0
suy ra x vô nghiệm
6.sắp xếp:
a.2/3,3/8,5/16,5/12,3/4
b.15/16,,3/17,1/2,15/13,18/16
7.x/17=60/204;6+x/33=7/11;x/5<3/7;1<11/x<2
8.tìm phân số ở giữa của 3/4 và 3/5
9.2018/2019+2019/2020+2020/2021+2021/2018 với 4
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)