Những câu hỏi liên quan
PM
Xem chi tiết
H24
8 tháng 9 2023 lúc 13:12

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 5 2018 lúc 15:09

Chọn C

Gọi q là công bội của cấp số. Khi đó ta có

u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11

⇔ u 2 + u 3 + u 4 = 39 11 u 1 + u 5 = 82 11 ⇔ u 1 q + q 2 + q 3 = 39 11 u 1 1 + q 4 = 82 11

Suy ra: 

q 4 + 1 q 3 + q 2 + q = 82 39 ⇔ 39 q 4 − 82 q 3 − 82 q 2 − 82 q + 39 = 0

⇔ ( 3 q − 1 ) ( q − 3 ) ( 13 q 2 + 16 q + 13 ) = 0 ⇔ q = 1 3 , q = 3

q = 1 3 ⇒ u 1 = 81 11 ⇒ u n = 81 11 . 1 3 n − 1

q = 3 ⇒ u 1 = 1 11 ⇒ u n = 3 n − 1 11

 

 

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 5 2017 lúc 16:29

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 8 2018 lúc 13:15

Ta có

Giải bài 9 trang 107 sgk Đại số 11 | Để học tốt Toán 11

Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):

(1) ⇔ 2u1(4 – 1) = 72 ⇔ u1 = 12

Vậy u1 = 12 và q = 2

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 12 2018 lúc 8:27

Chọn C.

Gọi q là công bội của cấp số. Khi đó ta có:

Suy ra:  39q4 – 82q3 -82q2 -82q + 39 = 0

(3q – 1)(q – 3)(13q2 + 16q + 13) = 0 q = 1/3, q = 3

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 9 2017 lúc 4:34

Đáp án D

Bình luận (0)
LH
Xem chi tiết
NT
4 tháng 11 2023 lúc 21:26

\(\left\{{}\begin{matrix}u1+u2+u3=13\\u4-u1=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1\cdot q+u_1\cdot q^2=13\\u_1\cdot q^3-u_1=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1+q+q^2}{\left(q-1\right)\left(q^2+q+1\right)}=\dfrac{13}{26}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{q-1}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q-1=2\\u_1=\dfrac{26}{q^3-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}q=2+1=3\\u_1=\dfrac{26}{3^3-1}=1\end{matrix}\right.\)

Tổng 8 số hạng đầu của cấp số nhân là:

\(\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1\cdot\left(1-3^8\right)}{1-3}=3280\)

Bình luận (0)
AD
4 tháng 11 2023 lúc 21:29

\(\left\{{}\begin{matrix}u_1+u_2+u_3=13\\u_4-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+u_1.q+u_1.q^2=13\\u_1.q^3-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q-1\right)\left(q^2+q+1\right)=26\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13.\left(q-1\right)=26\\u_1.\left(q^3-1\right)=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}q=3\\u_1=1\end{matrix}\right.\)

\(S_8=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1.\left(1-3^8\right)}{1-3}=3280\)

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 9 2018 lúc 2:40

Chọn A.

Phương pháp: 

Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên là 

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 10 2017 lúc 16:16

Chọn C.

Công thức tổng quát của CSN có số hạng đầu là u1 và công bội  q

u n = u 1 . q n - 1

Cách giải:

Gọi số hạng đầu và công bội của CSN lần lượt là  u 1 , q

Theo đề bài ta có hệ phương trình:

 

Lây (2) chia cho (1) ta được:

Bình luận (0)