Rút gọn phân thức a) 2x² - 2xy / x²+x-xy-y b) x²-y²+z²+2xy/ x²-y²+z²+2xz
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
rút gọn phân thức
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
Cho phân thức : A = x mũ 2 + y mũ 2 - z mũ 2 + 2xy/x mũ 2 - x mũ 2 + z mũ 2 + 2xz. Rút gọn phân thức rồi tính giá trị của biểu thức x = 0,y = 2009, z = 2010
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
rút gọn phân thức
(x^2+y^2+z^2-2xy+2xz-2yz)/(x^2-2xy+y^2-z^2)
bạn nào làm ra cách giải sớm mình cho 3tick
Rút gọn phân thức: \(\frac{\text{x^2+y^2-z^2-2zt+2xy-t^2}}{x^2-y^2+z^2-2yt+2xz-t^2}\)
rút gọn biểu thức: x^2+y^2+z^2+2xy+2yx+2xz
Có lẽ không thể rút gọn thêm được đâu
Rút gọn phân thức: E= \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Rút gọn phân thức:
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(\frac{\left(x-y\right)^3+3xy\left(x+y\right)+y^3}{x-6y}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)
\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)
\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)
\(=\frac{x^3+6xy^2}{x-6y}\)
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)
\(=\frac{3x^2.\left(x-1\right)-4x.\left(x-1\right)+\left(x-1\right)}{2x^2.\left(x-1\right)+x.\left(x-1\right)-3.\left(x-1\right)}\)
\(=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\)
\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)
\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{2x.\left(x-1\right)+3.\left(x-1\right)}\)
\(=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+3\right)}\)
\(=\frac{3x-1}{2x+3}\)
Rút gọn biểu thức sau
(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2
2.Tính
a)(2+xy)^2
b) (5-3x)^2
c) (5-x^2)(5+x^2)
d) (5x-1)^3
e) (2x-y)(4x^2+2xy+y^2)
3.Rút gọn các biểu thức sau:
a) (a+b)^2 -(a-b)^2
b) (a+b)^3 -(a-b)^3-2b^3
c) (x+y+z)^2 -2(x+y+z)(x+y)+(x+y)^2
P/s:giúp mình giải nhé!!! giải theo 7 hằng đẳng thức đáng nhớ.
Bài 1:
a,(2+xy)^2=4+4xy+x^2y^2b,(5-3x)^2=25-30x+9x^2d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1