mọi người giúp mih với:
đặt a= ∛2-√3 + ∛2+√3. chứng minh C= 64/ (a2-3)3-3a là số nguyên
đặt a=\(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\).Chứng minh rằng \(\frac{64}{\left(a^2-3\right)^3}-3a\)là số nguyên.
Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\) + \(\sqrt[3]{2+\sqrt{3}}\)
Suy ra a^3 = 3a +4 => (a^2 -3)a=4
<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3 <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4
mà 4 nguyên suy ra đpcm
Ta có \(a=3\sqrt{2-\sqrt{3}}+\sqrt{3}^32_{\sqrt{3}}\)
Suy ra ta được 3= 3a + 4 => (a ngũ 2 - 3)a =4
Vậy kết quả khi tính đ là
=> (4 trên a2 - 3) trên 3 =a ngũ 3 <=> 64 trên a 2 - a3 - 3a =4
Cho \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
Chứng minh rằng: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) có giá trị là số nguyên
\(a>0\)
Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Chứng Minh rằng (4a-3)^2-(3a-4)^2 luôn luôn chia hết ch 7 với mọi số nguyên a
\(=\left(4a-3-3a+4\right)\left(4a-3+3a-4\right)\)
\(=\left(a+1\right)\cdot7\cdot\left(a-1\right)⋮7\)
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
Chứng minh rằng a3 - 3a2 +2a chia hết cho 6 với mọi số nguyên a
Có: \(a^3-3a^2+2a=a\left(a^2-3a+2\right)\)\(=a\left(a^2-a-2a+2\right)=a\left[a\left(a-1\right)-2\left(a-1\right)\right]\)
\(=a\left(a-1\right)\left(a-2\right)\)
Vì \(a\left(a-1\right)\left(a-2\right)\)là tích ba số liên tiếp nên có chứa thừa số chia hết cho 2 và chia hết cho 3
mà 2 và 3 là hai số nguyên tố cùng nhau nên tích \(a\left(a-1\right)\left(a-2\right)⋮\left(2\cdot3\right)\Leftrightarrow a\left(a-1\right)\left(a-2\right)⋮6\)
Vậy \(a^3-3a^2+2a⋮6\)
1. chứng minh rằng với mọi số nguyên a,b,c,d , tích :
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
2. chứng minh rằng số A = \(2^{2^{2n+1}}+3\) là hợp số với mọi số nguyên dương n
giúp mình nha
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
Ta có :
\(2^{2n+1}=\left(3-1\right)^{2n+1}=BS3-1=3k+2\)
do đó :
\(A=2^{3k+2}+3=4.\left(2^3\right)^k+3=4\left(7+1\right)^k+3=BS7+7=BS7\)
Mà A > 7, vậy A là hợp số
1.Chứng minh rằng :Nếu p là số nguyên tố lớn hơn 3 thì (p+1).(p-1)⋮24
2.Cho p và 10p+1 là số nguyên tố lớn hơn 3.Chứng minh rằng 5p+1 là hợp số.
mọi người giúp em hai câu này với
mai em nộp rồi huhu
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
Bài 2:
P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số
Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
⇒ p = 2k + 1 (k \(\in\) N*)
ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)
⇒ 10p + 1 - 5p = 20k + 11 - (10k + 5)
⇒ 5p + 1 = 20k + 11 - 10k - 5
⇒ 5p + 1 = 10k + 6
⇒ 5p + 1 = 2.(5k + 3)
⇒ 5p + 1 ⋮ 1; 1; (5k + 3)
⇒ 5p + 1 là hợp số (đpcm)