\(=\left(4a-3-3a+4\right)\left(4a-3+3a-4\right)\)
\(=\left(a+1\right)\cdot7\cdot\left(a-1\right)⋮7\)
\(=\left(4a-3-3a+4\right)\left(4a-3+3a-4\right)\)
\(=\left(a+1\right)\cdot7\cdot\left(a-1\right)⋮7\)
chứng minh rằng với mọi số nguyên a
a^4 + 6a^3 + 11a^2 + 6a chia hết cho 24
a^5 - 5a^3 + 4a chia hết cho 120
3a^4 -14a^3 + 21a^2 -10a chia hết cho 24
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
chứng minh rằng (7n-2)2 -(2n-7)2 luôn chia hết cho 7 với mọi số nguyên n
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
Chứng Minh với mọi số nguyên a
Câu 1: (a^4 +6a^3 + 11a^2 +6a) chia hết cho 24
Câu 2: (a^5 - 5a^3 + 4a) chia hết cho 120
Câu 3: (3a^4 -14a^3 +21a^2 - 10a) chia hết cho 24
chứng minh rằng biểu thức n*(n+5)-(n-3)*(n+2) luôn chia hết cho 6 với mọi n số nguyên
chứng minh rằng : n^2(n+1) + 2n(n+1) luôn chia hết cho 6 với mọi số nguyên
chứng minh rằng (n-1)^2*(n+1)+(n^2-1) luôn chia hết cho 6 với mọi số nguyên n
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên