Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
KR
28 tháng 9 2023 lúc 22:00

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

Bình luận (0)
TL
Xem chi tiết
HD
Xem chi tiết
NM
22 tháng 10 2021 lúc 15:31

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

Bình luận (0)
H24
Xem chi tiết
NA
11 tháng 10 2018 lúc 21:07

a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(A=4x^2+4x+1-x^2+4-2x^2-2x\)

\(A=x^2+2x+5\)

b) Để A = 4

=> \(x^2+2x+5=4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c) Ta có A = x2 + 2x + 5

A = ( x + 1 )2 + 4

=> \(A\ge4>0\left(đpcm\right)\)

Bình luận (0)
LA
11 tháng 10 2018 lúc 21:07

a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(=4x^2+4x+1-x^2+4-2x^2-2x\)

\(=x^2+2x+5\)

b,\(A=x^2+2x+5=4\)

\(\Rightarrow x^2+2x+5-4=0\)

\(x^2+2x+1=0\)

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)

Hay: A > 0 => đpcm

=.= hok tốt!!

Bình luận (0)
H24
Xem chi tiết
LL
17 tháng 9 2021 lúc 11:38

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

Bình luận (0)
MT
Xem chi tiết
TL
1 tháng 1 2021 lúc 16:22

a)  \(A= \dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4} \\ =\dfrac{1}{x-2}+\dfrac{1}{x-2}+\dfrac{x^2+1}{(x-2)(x+2)} \\= \dfrac{x+2+x-2+x^2+1}{(x-2)(x+2)} \\=\dfrac{x^2+2x+1}{x^2-4} \\ =\dfrac{(x+1)^2}{(x-2)(x+2)}\)

b) Với mọi \(x\) thỏa mãn \(-2<x<2\) và \(x \ne -1\) thì \(x-2\) đều có giá trị âm, mà \(\begin{cases}(x+1)^2≥0\\x+2>0\\\end{cases}\) \( \Rightarrow\) Biểu thức A luôn có giá trị âm.

Bình luận (0)
LT
Xem chi tiết
NT
25 tháng 7 2023 lúc 22:14

a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)

\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)

b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)

c: x^2+1>=0

=>3/x^2+1>=0

=>-3/x^2+1<=0

=>A<=0(ĐPCM)

Bình luận (0)
NY
Xem chi tiết
NM
19 tháng 10 2021 lúc 14:19

\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 7 2018 lúc 17:27

Điều kiện x ≠ 1 và x  ≠  - 1

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Biểu thức dương khi x 2 + 2 x + 3 > 0

Ta có:  x 2 + 2 x + 3  =  x 2 + 2 x + 1 + 2  = x + 1 2 + 2 > 0 với mọi giá trị của x.

Vậy giá trị của biểu thức dương với mọi giá trị x  ≠  1 và x  ≠  - 1

Bình luận (0)