Những câu hỏi liên quan
NM
Xem chi tiết
LN
Xem chi tiết
LA
27 tháng 7 2017 lúc 19:27

Ta có: a3-7a = a(a2-7) = a(a2-1-6) = a(a-1)(a+1) -6a

\(\left\{{}\begin{matrix}a\left(a-1\right)\left(a+1\right)⋮6\\-6a⋮6\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a+1\right)-6a⋮6\)

=> a3-7a \(⋮6\) (a\(\in Z\))

Bình luận (0)
XT
Xem chi tiết
GC
12 tháng 8 2015 lúc 16:34

a/

a^3 -a = a.[a^2-1] = [a-1] .a . [a+1] là tích 3 số nguyên liên tiếp nên chia hết cho 6

b/

a^3 -7a  = a.[a^2-7] = a.[a^2-1-6] = a.[a-1]. [a+1] -6a

                    Vì a.[a-1] [a+1] chia hết cho 6 [theo a] ; 6a chia hết cho 6

=> a^3 -7a chia hết cho 6

Bình luận (0)
NT
22 tháng 8 2017 lúc 16:08

CMR a^3 chia hết cho 24

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2019 lúc 15:10

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 3 2021 lúc 16:58

\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)

Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :

 \((a-1)a\) ⋮ 2 (1)

Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 : 

\((a-1)a(a+1)\) ⋮ 3(2)

Từ (1)(2) suy ra: điều phải chứng minh

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 10 2021 lúc 17:20

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

Bình luận (0)
KC
Xem chi tiết
H24
15 tháng 12 2023 lúc 18:38

Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$

$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$

Với $n$ nguyên dương $\Rightarrow n-1\ge 0$

Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$

hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.

Bình luận (0)
H24
Xem chi tiết
LC
16 tháng 8 2015 lúc 11:32

Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Ta thấy: n-1 và n là 2 số tự nhiên liên tiếp.

=>(n-1).n chia hết cho 2

=>(n-1).n.(n+1) chia hết cho 2(1)

               n-1, n và n+1 là 3 số tự nhiên liên tiếp

=>(n-1).n.(n+1) chia hết cho 3(2)

Từ (1) và (2) ta thấy:

(n-1).n.(n+1) chia hết cho 2 và 3

mà (2,3)=1

=>(n-1).n.(n+1) chia hết cho 6

=>n3-n chia hết cho 6

=>ĐPCM

Bình luận (0)
tu
16 tháng 8 2015 lúc 11:39

ta có :

n.(n^2-1)=n.(n-1).(n+1)

Vì 3 số tự nhiên liên tiếp luôn chia hết cho 3=>n.(n-1).(n+1)chia hết cho 3

2 số tự nhiên nhiên liên tiếp luôn chia hết cho 2=>n.(n+1)chia hết cho 2=>n.(n+1).(n+2)chia hết cho 2

Từ 2 ý trên =>n.(n+1).(n+2)chia hết cho (2.3)

=>n.(n+1).(n+2)chia hết cho 6

Vậy n.(n+1).(n+2)chia hết cho 6

Bình luận (0)
NH
Xem chi tiết
H24
24 tháng 7 2021 lúc 10:08

a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100

c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)

vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

Mà(2, 3) = 1 

⇒n(n-1)(n-2) chia hết cho 2.3 = 6

Bình luận (0)
H24
24 tháng 7 2021 lúc 10:08

phần b mik ko giải đc 

Bình luận (1)
NT
25 tháng 7 2021 lúc 1:06

a) Ta có: \(101^{n+1}-101^n\)

\(=101^n\left(101-1\right)\)

\(=100\cdot101^n⋮100\)

b) Ta có: \(25^{n+1}-25^n\)

\(=25^n\left(25-1\right)\)

\(=25^{n-1}\cdot24⋮100\)

Bình luận (0)