b1 : cho abc(ab+bc+ca)khác0 giải phương trình ẩn x (x-b-c)/a+(x-c-a)/b+(x-a-c)/c
Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:
(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)
Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:
(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)
.
giải phương trình:
((x-a)/bc-1/b)+((x-b)/ca-1/c)+((x-c/ab)-1/a)=(ab+bc+ca)/abc
Cho abc (ab + bc + ca) khác 0. Giải phương trình ẩn x.
\(\frac{x-b-x}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)
Lời giải:
\(\frac{x-b-c}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)
\(\Leftrightarrow \frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)
\(\Leftrightarrow \frac{x-b-c-a}{a}+\frac{x-a-c-b}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow (x-a-b-c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0(1)\)
Vì $abc(ab+bc+ac)\neq 0\Rightarrow \frac{ab+bc+ac}{abc}\neq 0$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\neq 0(2)$
Từ $(1);(2)\Rightarrow x-a-b-c=0\Rightarrow x=a+b+c$
Giải phương trình ẩn x sau:
\(\frac{x-ab}{a+b}+\frac{x-bc}{b+c}+\frac{x-ca}{c+a}\ge a+b+c\)
cho abc(ab+bc+ac) khác 0. giải phương trình ẩn x sau :
(x-b-c)/a + (x-c-a)/b + (x-a-b)/c
Phương trình có mỗi một vế sao giải được bạn
Ta có :\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)
\(\Rightarrow\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}-3=0\)
\(\Rightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-a-b}{c}-1\right)=0\)
\(\Leftrightarrow\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) (1)
mà \(ab+bc+ca\ne0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}\ne0\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) (2)
Từ (1)(2) => x-a-b-c=0
=> x=a+b+c
Vậy ....
giải phương trình sau
\(\left(\dfrac{x-a}{bc}-\dfrac{1}{b}\right)+\left(\dfrac{x-b}{ca}-\dfrac{1}{c}\right)+\left(\dfrac{x-c}{ab}-\dfrac{1}{a}\right)=\dfrac{ab+bc+ca}{abc}\)
Giải các phương trình sau:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với x là ẩn và abc(ab+bc+ca)≠0
cho a,b,c ≠ 0 và (ab +bc +ca) ≠0 . Giải phương trình ẩn X
x-b-c/a + x-c-a/b + x-a-b /c =3
\(\begin{array}{l} \dfrac{{x - b - c}}{a} + \dfrac{{x - c - a}}{b} + \dfrac{{x - a - b}}{c} = 3\\ \Leftrightarrow \left( {\dfrac{{x - b - c}}{a} - 1} \right) + \left( {\dfrac{{x - c - a}}{b} - 1} \right) + \left( {\dfrac{{x - a - b}}{c} - 1} \right) = 3 - 1 - 1 - 1\\ \Leftrightarrow \dfrac{{x - a - b - c}}{a} + \dfrac{{x - a - b - c}}{b} + \dfrac{{x - a - b - c}}{c} = 0\\ \Leftrightarrow \left( {x - a - b - c} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) = 0\\ \Leftrightarrow x - a - b - c = 0\\ \Leftrightarrow x = a + b + c \end{array}\\ \boxed{NTT}\)
Giải phương trình ẩn x sau :
x3 - ( a + b + c ) x2 = -( ab + ac + bc )x + abc
gợi ý nha (mik lm còn j là hok nx ) (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc
Muốn chứng minh được ta phải chứng minh vế trái
(x2+bx+ax+ab)(x+c)=x3+ax2+bx2+cx2+abx+bcx+acx+abc
x3+ax2+bx2+cx2+abx+bcx+acx+abc=x3+ax2+bx2+cx2+abx+bcx+acx+abc(1)
Vì hai biểu thức trên (1) giông nhau
Do đó (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc