tìm x biết :
a, x chia hết cho 12 ; x chia hết cho 21 ; x chia hết cho 28 và 150<x<300
b, x chia hết cho 12 ; x chia hết cho 15 ; x chia hết cho 18 và x<0<300
c, x chia hết cho 12 ; x chia hết cho 25 ; x chia hết cho 30 và 0<x<500
Bài 1:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350
b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }
d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x>20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
tìm x en biết
a, x + 12 CHIA HẾT CHO x - 4
b, 2.x + 5 chia hết cho x - 1
c, 2 .x + 6 chia hết cho 2 . x - 1
d , 3 . x + 7 chia hết cho 2 . x - 2
e , 5 . x + 12 chia hết cho x - 3
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
Giải:
a) \(x+12⋮x-4\)
\(\Rightarrow x-4+16⋮x-4\)
\(\Rightarrow16⋮x-4\)
\(\Rightarrow x-4\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Ta có bảng giá trị:
x-4 | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
x | -12 (loại) | -4 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 5 (t/m) | 6 (t/m) | 8 (t/m) | 12 (t/m) | 20 (t/m) |
Vậy \(x\in\left\{0;2;3;5;6;8;12;20\right\}\)
b) \(2x+5⋮x-1\)
\(\Rightarrow2x-2+7⋮x-1\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
x | -6 (loại) | 0 (t/m) | 2 (t/m) | 8 (t/m) |
Vậy \(x\in\left\{0;2;8\right\}\)
c) \(2x+6⋮2x-1\)
\(\Rightarrow2x-1+7⋮2x-1\)
\(\Rightarrow7⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2x-1 | -7 | -1 | 1 | 7 |
x | -3 (loại) | 0 (t/m) | 1 (t/m) | 4 (t/m) |
Vậy \(x\in\left\{0;1;4\right\}\)
d) \(3x+7⋮2x-2\)
\(\Rightarrow6x-6+20⋮2x-2\)
\(\Rightarrow20⋮2x-2\)
\(\Rightarrow2x-2\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Vì \(2x-2\) là số chẵn nên \(2x-2\in\left\{\pm2;\pm4;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
2x-2 | -20 | -10 | -4 | -2 | 2 | 4 | 10 | 20 |
x | -9 (loại) | -4 (loại) | -1 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 6 (t/m) | 11 (t/m) |
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
e) \(5x+12⋮x-3\)
\(\Rightarrow5x-15+27⋮x-3\)
\(\Rightarrow27⋮x-3\)
\(\Rightarrow x-3\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Ta có bảng giá trị:
x-3 | -27 | -9 | -3 | -1 | 1 | 3 | 9 | 27 |
x | -24 (loại) | -6 (loại) | 0 (t/m) | 2 (t/m) | 4 (t/m) | 6 (t/m) | 12 (t/m) | 30 (t/m) |
Vậy \(x\in\left\{0;2;4;6;12;30\right\}\)
1)Tìm số tự nhiên a mà 144 chia hết cho a;192 chia hết cho a và a>20
2)Tìm số tự nhiên X, biết rằng x chia hết cho 12; x chia hết cho 21; x chia hết cho 28 và 150<x<300
Bài 2
x chia hết cho 12; 21; 28 => x ∈ BC(12;21;28)
12 = 22.3 ; 21 = 3.7; 28 = 22.7 => BCNN (12;21;28) = 22.3,7 = 84
=> x ∈ {0;84; 168; 252; 336;...}
Vì 150 < x < 300 nên x = 168 hoặc x = 252
ta có : 144=24.32
Bài 1 : ta có : 192=26.3 và 144=24.32
Vậy ƯCLN(144;192)=24.3=48
Vậy ƯC(144;192)={1;2;3;4;6;8;12;16;24;48}
Vậy các số cần tìm là : 24;48
\(1,\) Ta có \(144=3^2\cdot2^4;192=3\cdot2^6\)
\(\RightarrowƯCLN\left(144;192\right)=3\cdot2^4=48\)
\(\Rightarrow a\inƯ\left(48\right)=\left\{1;2;34;6;8;12;16;24;48\right\}\)
Mà \(a>20\)
\(\Rightarrow a\in\left\{24;48\right\}\)
Tìm x biết x ϵ{50;108;1234;2020}
a)X-12 chia hết cho 2
b)X-27 chia hết cho 3
c)X+20 chia hết cho 5
d)X+36 chia hết cho 9
a) \(x\in\left\{50;108;1234;2020\right\}\)
b) \(x\in\left\{108\right\}\)
c) \(x\in\left\{50;2020\right\}\)
d) \(x\in\left\{108\right\}\)
a: 126 chia hết cho x
180 chia hết cho x
=>\(x\inƯC\left(126;180\right)\)
=>\(x\inƯ\left(18\right)\)
mà x>9
nên x=18
b: x chia hết cho 10
x chia hết cho 12
x chia hết cho 18
Do đó: \(x\in BC\left(10;12;18\right)\)
=>\(x\in B\left(180\right)\)
mà x<200
nên x=180
Bài 1: Tìm số phần tử trong mỗi tập hợp sau
H = { 21;23;25;...;215 }
K = { 135;144;153;...;351 }
B = { x thuộc N / x - 8 = 12 }
D = { x thuộc N / 13 < x < 14 }
F = { x thuộc P / x có 2 chữ số }
M = { 57;60;63;...;423}
Bài 2:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250< a < 350
b, Tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50 < x < 80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0 < x < 300 }
d, tìm số tự nhiên a lớn nhất, biết 420 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x > 20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, Tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
Tập hợp H có số phần tử là :
( 215 - 21 ) : 2 + 1 = 98
Vậy tập hợp H có 98 phần tử
2. Tìm x biết
a) 4 chia hết cho x
b) 6 chia hết cho x+1
c) 12 chia hết cho x và 16 chia hết cho x
d) x chia hết cho 6 và x chia hết cho 4 thỏa mãn 12<x<40
e) x+5 chia hết cho x+1
a) 4 chia hết cho x
=> x \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {1;-1;2;-2;4;-4}
b) 6 chia hết x+1
=> x+1 \(\in\) Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Vậy x \(\in\) {-2;0;1;-3;2;-4;5;-7}
c) 12 chia hết cho x và 16 chia hết cho x
=> x \(\in\) ƯC(12;16) = {1;2;4}
Vậy x \(\in\) {1;2;4}
d) x chia hết cho 6 và x chia hết cho 4
=> x \(\in\) BC(6;4) = {0;12;24;48;...}
Mà 12<x<40 => x = 24
e) x+5 chia hết cho x+1
=> x+1+4 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {0;-2;1;-3;3;-5}
b) \(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)\)
hay \(x+1\in\left\{1,2,3,6\right\}\)
Vậy \(x\in\left\{0,1,2,5\right\}\)
1.Tìm STN a,biết rằng 150 chia cho a dư 16,72 chia cho a dư 12.
2.
a.Tìm x€N,biết 280 chia hết cho x,700 chia hết cho x,420 chia hết cho x và 40<x<100.
b.168 chia hết cho x,120 chia hết cho x,144 chia hết cho x và 5<x<20.
280 chia hết cho x ; 700 chia hết cho x ; 420 chia hết cho x và 40 < x < 100
=> x ∈ ƯC( 280 ; 700 ; 420 ) và 40 < x < 100
280 = 23 . 5 . 7
700 = 22 . 52 . 7
420 = 22 . 3 . 5 . 7
=> ƯCLN( 280 ; 700 ; 420 ) = 22 . 5 . 7 = 140
=> ƯC( 280 ; 700 ; 420 ) = Ư(140) = { 1 ; 2 ; 4 ; 5 ; 7 ; 10 ; 14 ; 20 ; 28 ; 35 ; 70 ; 140 }
mà 40 < x < 100
=> x = 70
60 nha bạn!!!
nhớ !thank you