Tìm x, biết:
\(\frac{2x+5}{-3}=\frac{4-3x}{2}\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
tìm x biết: a)\(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
b)
\(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
c)\(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{2}{9-6x}-\frac{3}{2}\)
a) Đặt \(x-1=a\)
\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)
Vậy pt vô nghiệm
a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2}=2\)
=> không có x thỏa mãn đề bài.
b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)
\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)
\(7-4x-3x^2=25x-25\)
\(7-4x-3x^2-25x+25=0\)
\(32-29x-3x^2=0\)
\(3x^2+29x-30=0\)
\(3x^2+32x-3x-32=0\)
\(x\left(3x+32\right)-\left(3x+32\right)=0\)
\(\left(3x+32\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)
Tìm x,y biết:
\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}\)
Ta có:\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}=\frac{x+1+2x-3}{4+5}=\frac{3x-2}{9}\)
Vì \(\frac{3x-2}{9y}=\frac{3x-2}{9}\Rightarrow9y=9\Rightarrow y=1\)
\(\Rightarrow\frac{x+1}{4}=\frac{3x-2}{9}\)
\(\Rightarrow9x+9=12x-8\)
\(9x-12x=-8-9\)
\(-3x=-17\)
\(x=\frac{17}{3}\)
Tìm x , biết :
a ) / 2x - 1 / + / 3x - 4 / = 5
b ) / 3x - 2 / + 4x = 9
c ) / 2x +\(\frac{4}{5}\)/ = / x - \(\frac{3}{2}\)/
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{4}{5}=x-\dfrac{3}{2}\\2x+\dfrac{4}{5}=\dfrac{3}{2}-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{10}\\x=\dfrac{7}{30}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|3x-2\right|=9-4x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(3x-2\right)^2-\left(4x-9\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(3x-2-4x+9\right)\left(3x-4+4x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(7-x\right)\left(7x-13\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{13}{7}\)
Tìm x biết:
\(\frac{-1}{2}\times\left(3x-1\right)+\frac{3}{4}\left(3-2x\right)=-3\times\left(\frac{x}{2}-1\right)-\left(\frac{4}{5}\right)^{-1}\)
BÀI 2: tìm số hữu tỹ X , biết rằng
a,\(\frac{-3}{2}-2X+\frac{3}{4}=-2\)2
b, (\(\frac{-2}{3}x-\frac{3}{5}\))(\(\frac{3}{-2}-\frac{10}{3}\))=\(\frac{2}{5}\)
c,\(\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}.x\right)\)
d,\(\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
e,\(\frac{2}{3x}-\frac{3}{12}=\frac{4}{5}-\left(\frac{7}{x}-2\right)\)
a. \(\frac{-3}{2}-2x+\frac{3}{4}=-22\)2
=> \(-2x=-22+\frac{3}{2}-\frac{3}{4}\)
=> \(-2x=\frac{-85}{4}\)
=> \(x=\frac{-85}{4}:\left(-2\right)\)
=> \(x=\frac{85}{8}\)
b. \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\left(\frac{3}{-2}-\frac{10}{3}\right)=\frac{2}{5}\)
=> \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\frac{-29}{6}=\frac{2}{5}\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{2}{5}:\left(\frac{-29}{6}\right)\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{-12}{145}\)
=> \(\frac{-2}{3}x=\frac{-12}{145}+\frac{3}{5}\)
=> \(\frac{-2}{3}x=\frac{15}{29}\)
=> x = \(\frac{15}{29}:\frac{-2}{3}\)
=> x = \(\frac{-45}{58}\)
TÌM X BIẾT \(\frac{X-1}{X^2-9X+20}+\frac{2X-2}{X^2-6X+8}+\frac{3X-3}{X^2-X-2}+\frac{4X-4}{X^2+6X+5}=0\)
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
Tìm x biết
a,\(\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
b, \(\frac{1}{x-1}+\frac{-2}{3}\cdot\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
c,\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
d, \(\left(2x-4\right)\cdot\left(9-3x\right)>0\)
e, \(\left(\frac{3}{2x}-4\right)\cdot\frac{5}{3}>\frac{15}{6}\)
Không cần làm hết đâu , giúp mình mấy câu các bạn biết thôi , trình bày giùm mình nha
cảm ơn , mong mọi người giúp đõ
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
Tìm x hữu tỉ biết: \(\frac{2x+\frac{2x^2}{x}}{3x}=\frac{3}{4}\)
Ta có: \(\frac{2x+\frac{2x^2}{x}}{3x}=\frac{3}{4}\)
\(\Rightarrow\frac{2x+2x}{3x}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4x}{3x}=\frac{3}{4}\)
\(\Rightarrow x=\frac{16}{9}\)
theo mk thi x chỉ có thể bằng 0
giai ra ta dc \(\frac{4x}{3x}\)= \(\frac{3}{4}\)\(\Rightarrow\)16x=9x (vô li)