a.1/căn3-căn2 + 1/căn3+căn2 - 3-căn3/căn3-1
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
Thực hiện phép tính
a. 5+2 căn5/căn5+căn2
b.Căn(2-căn3/2+căn3)
c.(2/căn3-1 + 3/căn3-2 + 15/3-căn3) x 1/căn3+5
d.(căn14-căn7/1-căn2 + căn15-căn5/1-căn3) : 1/căn7-căn5
Mình đang cần gấp
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
B=căn ( căn5 - căn2)^2 .(căn6 - căn2 / 1- căn3 - 5/ căn5)
Cho A = (căn2 -1)/(2+1) + (căn3 - căn2) +.....+(căn100 - căn 99)/(100+99).Chứng minh A < 9/20
căn2(x+1)/căn3(2x+1)=1/(x+2)
Thực hiện phép tính
a. 5+2 căn5/căn5+căn2
b.Căn(2-căn3/2+căn3)
c.(2/căn3-1 + 3/căn3-2 + 15/3-căn3) x 1/căn3+5
d.(căn14-căn7/1-căn2 + căn15-căn5/1-căn3) : 1/căn7-căn5
Rút gọn S=(1/2*căn1 +1*căn2) +(1/3*căn2+2*căn3) + ... +(1/1999*căn1998 + 1998*căn1999 )+(1/2000*căn1999 + 1/1999*căn2000)
\(\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\)
\(=\frac{1}{\sqrt{n-1}\sqrt{n}\left(\sqrt{n-1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n-1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)
Sau đó bạn tự áp dụng vào nhé!
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
Cm : 1/căn1 + 1/căn2 + 1/căn3 +...+ 1/căn32 > 10