Những câu hỏi liên quan
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:16

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow  - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow  - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha  \le 1\;\; \Leftrightarrow  - 2 \le \sin x + \cos x \le 2\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).

Bình luận (0)
HH
Xem chi tiết
NC
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

Bình luận (0)
GB
Xem chi tiết
NT
9 tháng 8 2023 lúc 22:23

\(-1< =sin\left(x-\dfrac{pi}{5}\right)< =1\)

=>\(0< =sin\left(x-\dfrac{pi}{5}\right)+1< =2\)

=>\(0< =\sqrt{1+sin\left(x-\dfrac{pi}{5}\right)}< =\sqrt{2}\)

=>\(-3< =y< =\sqrt{2}-3\)

TGT là \(T=\left[-3;\sqrt{2}-3\right]\)

Bình luận (0)
H24
9 tháng 8 2023 lúc 22:24

\(sin\left(x-\dfrac{\pi}{5}\right)\in\left[-1;1\right]\)

\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}\in\left[0;\sqrt{2}\right]\)

\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}-3\in\left[-3;\sqrt{2}-3\right]\)

Vậy \(y\in\left[-3;\sqrt{2}-3\right]\)

Bình luận (0)
H24
Xem chi tiết
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:16

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:28

a)

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

0

\( - \frac{1}{2}\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.

 

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 1 2024 lúc 22:28

Ủa sao xài hoành độ đỉnh ở đây được nhỉ, phải xài nghiệm (đúng hơn là lợi dụng quy tắc dấu tam thức bậc 2 "trong khác - ngoài cùng")

Đây, ví dụ 1 trường hợp cho em (bài này ở trên đã đưa dấu a>0 theo thói quen). 2 đường màu đỏ là khoảng \(\left(-1;\dfrac{1}{2}\right)\), rõ ràng đỉnh parabol nằm trong khoảng đó nhưng trên khoảng \(\left(-1;\dfrac{1}{2}\right)\) hàm vẫn có 1 đoạn nhận giá trị dương (tương ứng với đoạn BC)

loading...

Cách làm đúng ở đây là cần sử dụng quy tắc tam thức bậc 2  (hoặc 1 số pp khác nhưng ko thể là hoành độ đỉnh). Lợi dụng quy tắc tam thức bậc 2: nếu pt bậc 2 có 2 nghiệm \(x_1;x_2\) thì \(a.f\left(x\right)< 0\) với \(x\in\left(x_1;x_2\right)\) và \(a.f\left(x\right)>0\) với \(x\notin\left(x_1;x_2\right)\).

Do đó để  \(f\left(x\right)< 0\) ; \(\forall x\in\left(p;q\right)\) nào đó (khi a dương), đồng nghĩa khi đó p và q phải nằm giữa 2 nghiệm, hay \(f\left(p\right)\) và \(f\left(q\right)\) đều âm.

Bình luận (2)
NL
8 tháng 1 2024 lúc 22:02

Hàm xác định trên khoảng đã cho khi và chỉ khi:

\(4\left(sin^6x+cos^6x\right)-6m.sin2x+2-m^2\ge0;\forall x\in\left(...\right)\)

\(\Leftrightarrow4\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]-6m.sin2x+2-m^2\ge0;\forall x\in...\)

\(\Leftrightarrow-3sin^22x-6m.sin2x-m^2+6\ge0\)

Đặt \(sin2x=t\Rightarrow t\in[-1;\dfrac{1}{2})\)

\(\Rightarrow f\left(t\right)=3t^2+6mt+m^2-6\le0\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}f\left(-1\right)\le0\\f\left(\dfrac{1}{2}\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m-3\le0\\m^2+3m-\dfrac{21}{4}< 0\end{matrix}\right.\)

Ủa biến đổi có sai ở đâu ko mà BPT cuối nhìn nghiệm xấu vậy

Bình luận (2)
H24
Xem chi tiết
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:09

a) \(g'\left( x \right) = y' = {\left( {2x + \frac{\pi }{4}} \right)^,}.\cos \left( {2x + \frac{\pi }{4}} \right) = 2\cos \left( {2x + \frac{\pi }{4}} \right)\)

b) \(g'\left( x \right) =  - 2{\left( {2x + \frac{\pi }{4}} \right)^,}.\sin \left( {2x + \frac{\pi }{4}} \right) =  - 4\sin \left( {2x + \frac{\pi }{4}} \right)\)

Bình luận (0)