Những câu hỏi liên quan
HD
Xem chi tiết
NK
8 tháng 2 2017 lúc 20:51

k cho minh giai cho

Bình luận (0)
Xem chi tiết
DH
30 tháng 12 2022 lúc 14:53

Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;

Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.

Bình luận (0)
NC
Xem chi tiết
TC
24 tháng 8 2021 lúc 16:23

undefined

Bình luận (0)
NT
25 tháng 8 2021 lúc 1:05

b: Gọi số bị trừ là x

Số trừ là x-98

Theo đề, ta có: \(x\left(x-98\right)=1998\)

\(\Leftrightarrow x^2-98x-1998=0\)

mà x nguyên

nên \(x\notin\varnothing\)

Bình luận (0)
NH
Xem chi tiết
NB
11 tháng 11 2021 lúc 18:38

A =3+32+33+...+3119

A=(3+32)+(33+34)+...(3118+3119)

A=3.(1+3)+33.(1+3)+...+3118.(1+3)

A=3.4+33.4+...+3118.4

A=4.(3+33+...+3118)\(⋮\)4

=>A\(⋮\)4

A=3+32+33+...+3119

A=(3+32+33)+...+(3117+3118+3119)

A=3.(1+3+9)+...+3117.(1+3+9)

A=3.13+...+3117.13

A=13.(3+...+3117)\(⋮\)13

vì   A\(⋮\)4

và  A\(⋮\)13

=>A\(⋮\)4.13

=>A\(⋮\)52

vậy A\(⋮\)4 và A\(⋮\)52

Bình luận (0)
 Khách vãng lai đã xóa
MH
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
.
9 tháng 7 2021 lúc 22:11

Ta có: `B = 1 + 3 + 3^2 + ... + 3^1991`

`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^1989 + 3^1990 + 3^1992)`

`= 13 + 3^3 (1 + 3 + 3^2) + ... + 3^1989 (1 + 3 + 3^2)`

`= 13 + 3^3 . 13 + ... + 3^1989 . 13`

`= 13 (1 + 3^3 + ... + 3^1989)`

Vì \(13\left(1+3^3+...+3^{1989}\right)⋮13\) nên \(B⋮13\)

`B = 1 + 3 + 3^2 + ... + 3^1991`

= (1 + 3^4) + (3 + 3^5) + ... + (3^1987 + 3^1991)`

`= 82 + 3 (1 + 3^4) + ... + 3^1987 (1 + 3^4)`

`= 82 + 3 . 82 + ... + 3^1987 . 82`

`= 82 (1 + 3 + ... + 3^1987)`

Vì \(82\left(1+3+...+3^{1987}\right)⋮41\) nên \(B⋮41\)

`C = 3 + 3^2 + 3^3 + ... + 3^1000`

 \(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)

`= 120 + 3^4 (3 + 3^2 + 3^3 + 3^4) + ... + 3^996 (3 + 3^2 + 3^3 + 3^4)`

`= 120 + 3^4 . 120 + ... + 3^996 . 120`

`= 120 (1 + 3^4 + ... + 3^996)`

Vì \(120\left(1+3^4+...+3^{996}\right)⋮120\) nên \(C⋮120\)

Bình luận (0)
NT
9 tháng 7 2021 lúc 22:26

Ta có: \(C=3+3^2+3^3+...+3^{1000}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)

\(=120\left(1+3^5+...+3^{997}\right)⋮120\)(đpcm)

Bình luận (0)
TH
Xem chi tiết
AH
13 tháng 10 2023 lúc 23:37

Lời giải:

$S=3^1.3^2.3^3....3^{1998}=3^{1+2+3+...+1998}=3^{1997001}$

Ta thấy các ước của $S$ có dạng $3^m$ với $0\leq m\leq 1997001$ với $m$ là số tự nhiên.

Do đó $S\not\vdots 26$ 

Bình luận (0)
PT
Xem chi tiết
KL
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Bình luận (0)
CD
Xem chi tiết