CMR: B= 1+3+3^3+3^5+...+3^1991 chia hết cho 13 và 41

C= 3+32+33+..........+31000  ⋮ 120

bn nào làm hộ mk cần gấp

 

.
9 tháng 7 2021 lúc 22:11

Ta có: `B = 1 + 3 + 3^2 + ... + 3^1991`

`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^1989 + 3^1990 + 3^1992)`

`= 13 + 3^3 (1 + 3 + 3^2) + ... + 3^1989 (1 + 3 + 3^2)`

`= 13 + 3^3 . 13 + ... + 3^1989 . 13`

`= 13 (1 + 3^3 + ... + 3^1989)`

Vì \(13\left(1+3^3+...+3^{1989}\right)⋮13\) nên \(B⋮13\)

`B = 1 + 3 + 3^2 + ... + 3^1991`

= (1 + 3^4) + (3 + 3^5) + ... + (3^1987 + 3^1991)`

`= 82 + 3 (1 + 3^4) + ... + 3^1987 (1 + 3^4)`

`= 82 + 3 . 82 + ... + 3^1987 . 82`

`= 82 (1 + 3 + ... + 3^1987)`

Vì \(82\left(1+3+...+3^{1987}\right)⋮41\) nên \(B⋮41\)

`C = 3 + 3^2 + 3^3 + ... + 3^1000`

 \(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)

`= 120 + 3^4 (3 + 3^2 + 3^3 + 3^4) + ... + 3^996 (3 + 3^2 + 3^3 + 3^4)`

`= 120 + 3^4 . 120 + ... + 3^996 . 120`

`= 120 (1 + 3^4 + ... + 3^996)`

Vì \(120\left(1+3^4+...+3^{996}\right)⋮120\) nên \(C⋮120\)

Bình luận (0)
NT
9 tháng 7 2021 lúc 22:26

Ta có: \(C=3+3^2+3^3+...+3^{1000}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)

\(=120\left(1+3^5+...+3^{997}\right)⋮120\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
AH
Xem chi tiết
AN
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
CT
Xem chi tiết
RC
Xem chi tiết
RC
Xem chi tiết
CT
Xem chi tiết