Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
TV
Xem chi tiết
PA
Xem chi tiết
DM
Xem chi tiết
PN
Xem chi tiết
BH
26 tháng 1 2022 lúc 21:37

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

Bình luận (0)
BH
26 tháng 1 2022 lúc 21:36

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

chỉ cần chứng minh được\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+x}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé.

 

 
Bình luận (0)
BH
26 tháng 1 2022 lúc 21:37

 

 

Bình luận (0)
HT
Xem chi tiết
LA
14 tháng 3 2016 lúc 21:17

thay ab+bc+ac=1 vào 1+a^2=ab+bc+ca+a^2=b*(a+c)+a*( a+c)=(a+b)*(a+c)

tương tự 1+b^2=(a+b)*(b+c);1+c^2=(a+c)*(b+c)

mẫu số của A=(a+b)^2*(b+c)^2*(c+a)^2=Tử số của A

=> A=1

Bình luận (0)
NA
Xem chi tiết
GI
1 tháng 12 2017 lúc 22:15

Chỗ giả thiết vế phải có đúng ko vậy

Bình luận (0)
TV
Xem chi tiết
H24
5 tháng 4 2021 lúc 21:32

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Dấu = xảy ra khi a=b=c=1/3

Bình luận (0)
VH
5 tháng 4 2021 lúc 21:37

Áp dụng hệ quả bất đẳng thức Cô - si , ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\cdot1\ge9\)

\(\Leftrightarrow\)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Bình luận (0)
PD
6 tháng 4 2021 lúc 16:21

Áp dụng BĐT Cauchy Shwarz dạng Engel ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge \dfrac{(1+1+1)^2}{a+b+c}=\dfrac{9}{1}\)

\(\to \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge 9\)

\(\to\) Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

\(\to a=b=c\)

Bình luận (0)
DH
Xem chi tiết