Cho cac so thuc phan a,b,c khac nhau doi mot va thoa man a^2-b=b^2-c=c^2-a . CMR (a+b+1)()b+c+1(c+a+1)=-1- de hsg tinh mon toan 9 nam 2012
Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a,b,c tung doi 1 khac nhau thoa man: ab+bc+ac=1
Tinh: A= [(a+b)2 (b+c)2 (a+c)2] / [(1+a2)(1+b2)(1+c2)]
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
cho a,b,c,d la cac so nguyen duong doi 1 khac nhau thoa man a/a+b + b/b+c + c/c+d + d/d+a =2
CMR abcd la 1 so chinh phuong
cho ba số a,b.c khac 0 va thoa man a+b+c =0 tinh gia tri cua bieu thuc P=1/a2+b2-c2 + 1/b2+c2-a2 + 1/c2+a2-b2
cho 3 so a,b,c khac 0 va (a+b+c)^2=a^2+b^2+c^2 . chung minh \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3abc\)
Cho ba số a, b, c đề khác 0 và a2 + b2 + c2 - ab - bc - ca = 0
CMR: ( 1 + \(\dfrac{a}{b}\) ) ( 1 + \(\dfrac{b}{c}\) ) ( 1 + \(\dfrac{c}{a}\) ) = 8