Cho tam giác MNP vuông tại M , đg cao MH , có MN=6cm, NH=10cm.Tính MP, MH, NH, Hp
Cho tam giác MNP vuông tại M , đg cao MH , có MN=6cm, NP=10cm.Tính MP, MH, NH
Áp dụng định lý Pitago:
\(MP=\sqrt{NP^2-MN^2}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(MH.NP=MN.MP\Rightarrow MH=\dfrac{MN.MP}{NP}=4,8\left(cm\right)\)
Áp dụng định lý Pitaho cho tam giác vuông MNH:
\(NH=\sqrt{MN^2-MH^2}=3,6\left(cm\right)\)
Cho tam giác MNP vuông tại M, đường cao AH, biết NH=4cm, HP=12cm. Tính MH, MN, MP.
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác MNP vuông tại M, chiều cao MH ( H€NP) biết MN=3 cm,MP=4 CM, HN=1,8 cm. Tính độ dàp NH,MH,HP
ΔMNP vuông tại M
=>\(NP^2=MN^2+MP^2\)
=>\(NP^2=3^2+4^2=25\)
=>\(NP=\sqrt{25}=5\left(cm\right)\)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH\cdot NP=MN\cdot MP\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=12/5=2,4(cm)
Xét ΔPMN vuông tại M có MH là đường cao
nên \(PH\cdot PN=PM^2\)
=>\(PH\cdot5=4^2=16\)
=>PH=16/5=3,2(cm)
Cho tam giác MNP vuông tại M. MH là đường cao. Kẻ HK vuông góc với MN tại K. HQ vuông góc với MP tại Q. Chứng Minh
MH^2=NH x HP
bài 5 cho tam giác MNP vuông tại M có đường cao MH .Biết MN=10cm,MH=120/13cm.Tính độ dài các đoạn thẳng MP,NH và PH
bài 6 tam giác ABC vuông tại A ,đường cao AH ⊥ BC.Biết AB=6cm ,CH=6,4cm a, tính BH b, tính AC
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
Cho tam giác MNP vuông tại M có đường cao MH; kẻ HD vuông góc với MN (D ∈ MN), HE vuông góc với MP (E ∈ MP)
a) Chứng minh tứ giác MEDH là hình chứ nhật
b) Gọi O là trung điểm của MH, chứng minh DO=OE
c) Gọi I, K lần lượt là trung điểm của NH và HP, chứng minh DI//EK
a: Xét tứ giác MDHE có
\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)
=>MDHE là hình chữ nhật
b: MDHE là hình chữ nhật
=>MH cắt DE tại trung điểm của mỗi đường
mà O là trung điểm của MH
nên O là trung điểm của DE
=>DO=OE
c: ΔHDN vuông tại D
mà DI là đường trung tuyến
nên DI=HI=IN
=>ΔIHD cân tại I
ΔPEH vuông tại E
mà EK là đường trung tuyến
nên EK=KP=KH
=>ΔKEH cân tại K
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{KHE}+\widehat{HMD}\)
\(=\widehat{HMD}+\widehat{HND}=90^0\)
=>KE vuông góc ED(1)
\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)
\(=\widehat{IHD}+\widehat{EMH}\)
\(=\widehat{HPM}+\widehat{HMP}=90^0\)
=>ID vuông góc DE(2)
Từ (1) và (2) suy ra DI//EK
Cho tam giác MNP ( góc M= 90°), MH vuông góc với NP tại H, MN=9, MP=12. a, chứng minh tam giác HNM đồng dạng vs tam giác MNP b, tính NP, MH, NH, HP c, gọi MI là phân giác góc M. Tính NI, IP
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
cho tam giác MNP vuông tại M biết MN=6cm MP= 8cm vẽ đường cao MH
a)cmr: tam giác MNP đồng dạng với tam giác HPM
b)cmr MP^2=MH*NP
c)tinh PN,MH,,PH.