1/2.4 + 1/4.6+1/6.8+...+1/20.22
1+2/3+2/6+2/10+2/15+...+2/45
BT1: Tính
1) A= \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{20.22}\)
A=\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{20\cdot22}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{20}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{11}{22}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{5}{11}\)
\(=\dfrac{5}{22}\)
Tính:
A=\(\frac{1}{2}.1111-\frac{1}{3}.1111-\frac{1}{6}.1111\)
B=\(\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+.....+\frac{3}{20.22}\)
\(B=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+...+\frac{3}{20.22}\)
\(=\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+...+\frac{1}{20.22}\)
\(=\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
\(=\frac{1}{4}-\frac{1}{22}\)
\(=\frac{9}{44}\)
A = 1111 x ( 1/2 - 1/3 - 1/6 )
A = 1111 x 0 = 0
B = 3/4 x 6 + 3/6 x 8 + 3/8 x 10 + ... + 3/20 x 22
B = 3/2 ( 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/20 - 1/22 )
B = 3/2 x ( 1/4 - 1/22 )
B = 3/2 x 9/44 = 27/88
\(A=\frac{1}{2}.1111-\frac{1}{3}.1111-\frac{1}{6}.1111\)
\(A=1111.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)=
BÀi 1: Tính :
B=2.4+4.6+6.8+8.10+......+20.22
GIẢI TỪNG BƯỚC HỘ MK NHÉ !!! AI NHANH MK TICK!!!!!!!!!!
\(6B=2.4.6+4.6.6+6.8.6+8.10.6+...+20.22.6.\)
\(6B=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+8.10.\left(12-6\right)+...+20.22.\left(24-18\right)\)
\(6B=2.4.6-2.4.6+4.6.8-4.6.8+6.8.10-6.8.10+8.10.12-...-18.20.22+20.22.24\)
\(6B=20.22.24\Rightarrow B=\frac{20.22.24}{6}=4.20.22=1760\)
Tính giá trị biểu thức
a) 2/5.1/3-2/15:1/5+3/5.1/3
b) 4/2.4+4/4.6+4/6.8+....+4/2008.2010
\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)
\(=\frac{11}{15}\)
~ Hok tốt ~
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)
\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)
\(=4.\frac{502}{1005}=\frac{2008}{1005}\)
~ Hok tốt ~
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Study well ! >_<
tính.
A. ( 10/99 + 11/199 + 12/299) * ( 1/2 -1/3- 1/6)
B. 4/( 2.4) + 4/(4.6) + 4/( 6.8)+...+ 4/( 2012+2014) + 4/( 2014+2016)
mọi người làm giúp tớ với, thanks
à, mình tự giải được rồi nhé. hihi
Tính tổng:
a, B=11^2+13^2+15^2+...+2005^2
b,C=20^2+22^2+24^2+...+48^2+50^2
c, D=1^2+2^2-3^2+4^2-5^2+6^2-...-15^2+20^2
d, E=2.4+4.6+6.8+...+98.100
e, G=1.3+3.5+5.7+...+(2n-1).(2n+1)
Help me, chiều mình đi học
tính:a)1/2022-5/2.4-5/4.6-5/6.8.....5/2020.2022
b)2^2/1.3+2^2/3.5+...+2^2/197.199
a) Ta có: \(\dfrac{1}{2022}-\dfrac{5}{2\cdot4}-\dfrac{5}{4\cdot6}-\dfrac{5}{6\cdot8}-...-\dfrac{5}{2020\cdot2022}\)
\(=\dfrac{1}{2022}-5\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\cdot\dfrac{1010}{2022}\)
\(=\dfrac{1}{2022}-\dfrac{2025}{2022}=\dfrac{-1262}{1011}\)
b) Ta có: \(\dfrac{2^2}{1\cdot3}+\dfrac{2^2}{3\cdot5}+...+\dfrac{2^2}{197\cdot199}\)
\(=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{197\cdot199}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)
\(=2\left(1-\dfrac{1}{199}\right)\)
\(=2\cdot\dfrac{198}{199}=\dfrac{396}{199}\)
Bài1:Tính giá trị của biểu thức
a.2/5.1/3-2/15:1/5+3/5.1/3
b.[6+(1/2)3- l-1/2l]:3/12
c.(-1/2)2:1/4-2(-1/2)2
d.F=4/2.4+4/4.6+4/6.8+...+4/2008.2010
e.F=1/18+1/54+1/108+...+1/990
a: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2-10+3}{15}=\dfrac{-5}{15}=\dfrac{-1}{3}\)
b: \(=\left(6+\dfrac{1}{8}-\dfrac{1}{2}\right)\cdot4=\dfrac{48+1-4}{8}\cdot4=\dfrac{45}{2}\)
c: \(=\dfrac{1}{4}\cdot4-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
d: \(F=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2008\cdot2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{1004}{2010}=\dfrac{1004}{1005}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
bạn ơi mình ko hiểu chỗ \(\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
thì là do
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n+2}=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
:)