(\(\frac{3}{4}\) * x - 0,54 ) : \(\frac{2}{9}\)=\(\frac{3}{4}\)- 0,48
tỉm x
+) A = ( 1,11 + 0,19 - 2,6 ) : ( 2,06 + 0,54 ) - ( \(\frac{1}{2}\) + \(\frac{1}{3}\) ) : 2
+) Tìm x :
a, (1,16 - x ) . 2,25 / 10 \(\frac{5}{9}\) - 7\(\frac{1}{4}\) . 2\(\frac{2}{11}\) = 75%
b) x + 25% .x = -1,25
c) x - 75% x = \(\frac{1}{4}\)
+) Tính nhanh nếu có thể :
a) 1\(\frac{1}{2}\) - 3\(\frac{3}{4}\) b) -8\(\frac{1}{6}\) - 7\(\frac{3}{2}\) c) 0,15 - 4,8 + 1,3 d) ( 2\(\frac{1}{3}\) + 3,5 ) : (-4\(\frac{1}{6}\) + 3\(\frac{1}{7}\) ) + 7,5
e) 11\(\frac{1}{4}\) + (2\(\frac{5}{7}\) + 5\(\frac{1}{4}\) ) f) \(\frac{4}{9}\) : ( \(\frac{1}{-7}\) + 6\(\frac{5}{9}\) :(-\(\frac{1}{7}\))
Bài 2:
b: x+25%x=-1,25
=>1,25x=-1,25
hay x=-1
c: x-75%x=1/4
=>1/4x=1/4
hay x=1
Bài 2:
a: =3/2-11/4=6/4-11/4=-5/4
b: =-49/6-17/2=-49/6-51/6=-100/6=-50/3
Cho A=\(\frac{1,11+0,19-13.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\) và B=\(\left(\frac{47}{8}-\frac{9}{4}-0,5\right):2\frac{23}{26}\)
a) Tính A và B
b) Tìm số nguyên x để A<x<B
\(\frac{\text{A=1,11+0,19-13.2}}{2,06+0,54}\) -(\(\frac{1}{2}\)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
Tìm x
a \(\frac{3}{4}+\frac{1}{4}xX=2\)
b X - \(\frac{2}{3}x\frac{9}{4}=2,5-\frac{1}{2}\)
c \(2xX+\frac{1}{3}=\frac{4}{3}\)
d \(X:\frac{2}{3}+0,75=\frac{9}{4}+3\)
e \(\frac{6}{4}:X+\frac{1}{2}=\frac{9}{4}x\frac{2}{3}\)
f \(Xx\frac{3}{5}-\frac{2}{5}=3\frac{3}{4}-1\)
a, 3/4 + 1/4.x=2
1/4.x = 2-3/4
1/4.x =5/4
x = 5/4:1/4
x = 5
b, x-2/3.9/4=2,5-1/2
x-2/3.9/4=2
x-2/3 =2:9/4
x-2/3 =8/9
x = 8/9+2/3
x = 14/9
c, 2.x+1/3=4/3
2.x =4/3-1/3
2.x =1
x =11:2
x = 1/2
Tìm x, biết:
a)\(\frac{2}{9}:x + \frac{5}{6} = 0,5;\)
b)\(\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3};\)
c)\(1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75;\)
d)\(\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\).
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
tinh bằng cách thuật tiện nhất
\(\frac{1}{10}x\frac{2}{9}x\frac{3}{8}x\frac{4}{7}x\frac{5}{6}x\frac{6}{5}x\frac{7}{4}x\frac{8}{3}x\frac{9}{2}\)
= \(x^8.\frac{1}{10}.\frac{2}{9}.\frac{3}{8}.\frac{4}{7}.\frac{5}{6}.\frac{6}{5}.\frac{7}{4}.\frac{8}{3}.\frac{9}{2}\)
= \(x^8.\frac{1}{10}.\left(\frac{2}{9}.\frac{9}{2}\right).\left(\frac{3}{8}.\frac{8}{3}\right).\left(\frac{4}{7}.\frac{7}{4}\right).\left(\frac{5}{6}.\frac{6}{5}\right)\)
= \(x^8.\frac{1}{10}.1.1.1.1\)
= \(x^8.\frac{1}{10}\)
Mk ko pik co dung ko nua
Tìm đa thức P trong các đẳng thức sau:
a) \(P + \frac{1}{{x + 2}} = \frac{x}{{{x^2} - 2{\rm{x}} + 4}}\)
b) \(P - \frac{{4\left( {x - 2} \right)}}{{x + 2}} = \frac{{16}}{{x - 2}}\)
c) \(P.\frac{{x - 2}}{{x + 3}} = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}\)
d) \(P:\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}} = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}\)
a)
\(\begin{array}{l}P + \frac{1}{{x + 2}} = \frac{x}{{{x^2} - 2{\rm{x}} + 4}}\\P = \frac{x}{{{x^2} - 2{\rm{x}} + 4}} - \frac{1}{{x + 2}}\\P = \frac{{x\left( {x + 2} \right) - {x^2} + 2{\rm{x}} - 4}}{{\left( {{x^2} - 2{\rm{x}} + 4} \right)\left( {x + 2} \right)}}\\P = \frac{{{x^2} + 2{\rm{x}} - {x^2} + 2{\rm{x}} + 4}}{{{x^3} + 8}}\\P = \frac{{4{\rm{x}} - 4}}{{{x^3} + 8}}\end{array}\)
b)
\(\begin{array}{l}P - \frac{{4\left( {x - 2} \right)}}{{x + 2}} = \frac{{16}}{{x - 2}}\\P = \frac{{16}}{{x - 2}} + \frac{{4\left( {x - 2} \right)}}{{x + 2}}\\P = \frac{{16\left( {x + 2} \right) + 4\left( {x - 2} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{16{\rm{x}} + 32 + 4{{\rm{x}}^2} - 16{\rm{x}} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{4{{\rm{x}}^2} + 48}}{{{x^2} - 4}}\end{array}\)
c)
\(\begin{array}{l}P.\frac{{x - 2}}{{x + 3}} = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}\\ \Rightarrow P = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}.\frac{{x + 3}}{{x - 2}}\\P = \frac{{{{(x - 2)}^2}(x + 3)}}{{(x - 3)(x + 3)(x - 2)}} = \frac{{x - 2}}{{x - 3}}\end{array}\)\(\)
d)
\(\begin{array}{l}P:\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}} = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}\\ \Rightarrow P = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}.\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}}\\P = \frac{{(x - 2)(x + 2)(x - 3)(x + 3)}}{{2{\rm{x}}(x + 3)(x + 2)}}\\P = \frac{{(x - 2)(x - 3)}}{{2{\rm{x}}}}\end{array}\)
a) P=\(\dfrac{4x-4}{x^3-8}\)( lấy VP-VT)
b)P=\(\dfrac{4x^2+48}{x^2-4}\) ( chuyển VT và thành VP+VT)
c) P=\(\dfrac{x-2}{x-3}\) ( chuyển VT thành VP.VT là ra)
d) \(\dfrac{\left(x-2\right)\left(x-3\right)}{2x}\)( lấy VP.VT)
Cho \(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)
a) Rút gọn A và B
b) Tìm x thuộc Z để A<x<B
A= \(\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2=\frac{-\frac{131}{100}}{\frac{13}{5}}-\frac{5}{6}:2\)
=\(-\frac{131}{260}-\frac{5}{12}=-\frac{359}{390}\)
B= \(\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}=\left(\frac{47}{8}-\frac{9}{4}-\frac{1}{2}\right):\frac{75}{26}=\frac{25}{8}.\frac{26}{75}=\frac{13}{12}\)
b) ta có : A=\(-\frac{359}{390}\approx-0,9\)
B= \(\frac{13}{12}\approx1,08\)
=> A<x<B mà x nguyên => x=0 hoặc x=1
Bài 1) Cho \(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\) và \(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\). Tìm x\(\in\)Z để A<x<B
\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2=\frac{-\frac{131}{100}}{\frac{13}{5}}-\frac{5}{6}:2\)
\(=-\frac{131}{260}-\frac{5}{12}=-\frac{359}{390}\)
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}=\left(\frac{47}{8}-\frac{9}{4}-\frac{1}{2}\right):\frac{75}{26}=\frac{25}{8}.\frac{26}{75}=\frac{13}{12}\)
Ta có : \(A=-\frac{359}{390}\approx-0,9\)
\(B=\frac{13}{12}\approx1,08\)
\(\Rightarrow A< x< B\) mà x nguyên \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Ta có:
\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2=\frac{\frac{-13}{10}}{\frac{13}{5}}-\frac{5}{6}:2=\frac{-1}{2}-\frac{5}{12}=\frac{-11}{12}\)
\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}=\left(\frac{47}{8}-\frac{9}{4}-\frac{1}{2}\right):\frac{75}{26}=\frac{25}{8}:\frac{75}{26}=\frac{13}{12}\)
\(\Rightarrow A< x< B\Rightarrow\frac{-11}{12}< x< \frac{13}{12}\Rightarrow-1< x\le1\Rightarrow x\in\left\{0;1\right\}\)