Những câu hỏi liên quan
Xem chi tiết
H24
28 tháng 6 2021 lúc 8:32

Lag tí -.-'

`ĐK:2<=x<=6`

BP 2 vế ta có:

`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`

`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`

`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`

`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`

Đặt `sqrt{-x^2+8x-12}=a(a>=0)`

`pt<=>a^2+2a-8=0`

`<=>a=2(tm),a=-4(l)`

`<=>-x^2+8x-12=4`

`<=>x^2-8x+16=0`

`<=>(x-4)^2=0<=>x=4(tmđk)`

Vậy `S={4}`

Bình luận (1)
NN
Xem chi tiết
H24
25 tháng 5 2021 lúc 16:57

Ghi thiếu đề bài nên tl lại oho

`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

Bình luận (0)
H24
25 tháng 5 2021 lúc 16:57

`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

Bình luận (0)
BL
Xem chi tiết
NL
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
HT
Xem chi tiết
H24
10 tháng 8 2019 lúc 20:28

ĐKXĐ: \(2\le x\le6\)

\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\\ \Leftrightarrow\left(\sqrt{x-2}+\sqrt{6-x}\right)^2=\left(\sqrt{x^2-8x+24}\right)^2\\ \Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\\ \Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\\ \Leftrightarrow-x^2+8x-20+2\sqrt{-x^2+8x-12}=0\left(1\right)\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\), ta có:

\(\left(1\right)\Leftrightarrow a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)

Ta có:

\(\sqrt{-x^2+8x-12}=2\Leftrightarrow-x^2+8x-12=4\\ \Leftrightarrow-x^2+8x-16=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x=4\left(tm\right)\)

Vậy....

P.s: Có gì sai mong mọi người góp ý!

#Lemon

Bình luận (0)
TP
10 tháng 8 2019 lúc 20:31

ĐK:....

\(pt\Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(x^2-8x=a\)

\(pt\Leftrightarrow2\sqrt{-a-12}=a+20\)

\(\Leftrightarrow4\left(-a-12\right)=\left(a+20\right)^2\)

\(\Leftrightarrow a^2+40a+400+4a+48=0\)

\(\Leftrightarrow a^2+44a+448=0\)

\(\Leftrightarrow\left(a+16\right)\left(a+28\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-16\\a=-28\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+16=0\\x^2-8x+28=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\\left(x-4\right)^2+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\varnothing\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất \(x=4\)

Bình luận (15)
VH
11 tháng 8 2019 lúc 15:09

Cách khác mà dài hơn nè:

Đặt \(\sqrt{x-2}=a;\sqrt{6-x}=b>0\), ta có:

\(\left\{{}\begin{matrix}a^2+b^2=4\\a+b=\sqrt{12-a^2b^2}\end{matrix}\right.\)

Giải hệ ta được \(ab=2\Leftrightarrow\left(x-2\right)\left(6-x\right)=4\)

\(\Leftrightarrow x=4\)

Thật ra để đến bước này là cả một quá trình oaoa

Bình luận (0)
LS
Xem chi tiết
TE
3 tháng 10 2017 lúc 21:13

Áp dụng bđt Bunhia,ta có VT^2<=2(x-2+6-x)=8

suy ra VT<=\(2\sqrt{2}\)

Dấu "=" xảy ra khi \(\sqrt{x-2}=\sqrt{6-x}\) <=> x-2=6-x <=>x=4

Mặc khác \(\sqrt{x^2-8x+24}=\sqrt{\left(x-4\right)^2+8}>=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(x-4\right)^2\)=0 <=> x=4

Vậy pt đã cho có 1 nghiệm duy nhất là x=4

Bình luận (0)
HL
Xem chi tiết
VF
21 tháng 7 2017 lúc 18:38

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

Bình luận (0)
MH
1 tháng 4 2019 lúc 21:41

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

Bình luận (0)
MT
Xem chi tiết
Xem chi tiết
Xem chi tiết