sqrt(4x - 20) + 3sqrt((x - 5)/9) = 3
sqrt(4x - 20) + 3sqrt((x - 5)/9) = 3
1/(sqrt(5) - sqrt(3)) + (5sqrt(3) - 3sqrt(5))/(2sqrt(15)) - sqrt(20)
\(\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\sqrt{15}-\sqrt{20}}\)
\(=\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\left(\sqrt{15}-\sqrt{5}\right)}\)
\(=\dfrac{2\sqrt{15}-2\sqrt{5}+\sqrt{15}\left(8-2\sqrt{15}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{2\sqrt{15}-2\sqrt{5}+8\sqrt{15}-30}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{10\sqrt{15}-2\sqrt{5}-30}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{2\sqrt{5}\left(5\sqrt{3}-1-3\sqrt{5}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{5\sqrt{3}-3\sqrt{5}-1}{\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\sqrt{15}-\sqrt{20}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{5}+3}{5-3}+\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{2\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{2}+\dfrac{\left(\sqrt{15}-3\right)\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{2}+\dfrac{3\sqrt{5}+\sqrt{15}-3\sqrt{3}-3}{2\cdot2}\)
\(=\dfrac{2\sqrt{5}+2\sqrt{3}+3\sqrt{5}+\sqrt{15}-3\sqrt{3}-3}{4}\)
\(=\dfrac{5\sqrt{5}-\sqrt{3}+\sqrt{15}-3}{4}\)
M = (3/(sqrt(x) + 3) + (x + 9)/(x - 9)) / ((2sqrt(x) - 5)/(x - 3sqrt(x)) - 1/(sqrt(x))) Rút gọn M giúp mik vs Thanks ah
\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)
\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)
root(5x + 2, 3) = 3 5sqrt(4x - 16) - 7/3 * sqrt(9x - 36) = 36 - 3sqrt(x - 4)
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
a \(\sqrt{4x-20}+\sqrt{x-5}=4+3\sqrt{\dfrac{x-5}{9}}\)
b \(\sqrt{4x-20}+\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{4x-45}=4\)
Lời giải:
a. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
b. Sửa đoạn 4x-45 thành 4x-20.
ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$
$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$
$\Leftrightarrow x-5=\frac{144}{25}=5,76$
$\Leftrightarrow x=10,76$ (tm)
3sqrt(x ^ 2 - 4x + 9) = 3x - 9
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
2sqrt(x + 2) + 3sqrt(4x + 8) - sqrt(9x + 18) = 10 giải phương trình
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$
$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$
$\Leftrightarrow 5\sqrt{x+2}=10$
$\Leftrightarrow \sqrt{x+2}=2$
$\Leftrightarrow x+2=4$
$\Leftrightarrow x=2$ (tm)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)