Giải phương trình: \(cos2x+\sqrt{3}sin2x+\sqrt{3}sinx-cosx=4\).
Giải phương trình:
\(\sqrt{3}\left(Sinx-Cos2x\right)+Cosx+Sin2x=0\)
Giải phương trình :
\(cos2x-\sqrt{3}sin2x-cosx-\sqrt{3}sinx+4=0\)
Giải phương trình: √3.cos2x-sin2x = √3.sinx + cosx
\(\sqrt{3}cos2x-sin2x=\sqrt{3}sinx+cosx\)
\(\Leftrightarrow\sqrt{3}cos2x-\sqrt{3}sinx-sin2x-cosx=0\)
\(\Leftrightarrow\sqrt{3}\left(1-2sin^2x-sinx\right)-2sinx.cosx-cosx=0\)
\(\Leftrightarrow-\sqrt{3}\left(sinx+1\right)\left(2sinx-1\right)-cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left[\sqrt{3}\left(sinx+1\right)+cosx\right]=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(\sqrt{3}sinx+cosx+\sqrt{3}\right)=0\)
\(\Leftrightarrow sinx=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
Giải các pt:
a) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
b) \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)
c) \(\sqrt{3}\left(cos2x+sin3x\right)=sin2x+cos8x\)
d) \(cos2x-\sqrt{3}sin2x=\sqrt{3}sinx+cosx\)
e) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x+\frac{1}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin\left(3x+\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\3x+\frac{\pi}{6}=\pi-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(\frac{1+cos2x}{2}\right)-3\sqrt{3}sin2x-4\left(\frac{1-cos2x}{2}\right)=-4\)
\(\Leftrightarrow3cos2x-3\sqrt{3}sin2x=-3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
c/
Ủa đề câu này bạn ghi đúng ko? Nhìn kì kì, cos8x hay cos3x bên vế phải vậy?
d/
\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x-\frac{\pi}{3}+k2\pi\\2x+\frac{\pi}{3}=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2\pi}{3}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
Giải phương trình:
1,\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
2,\(|cosx-sinx|+2sin2x=1\)
3,\(2sin2x-3\sqrt{6}|sinx+cosx|+8=0\)
4,\(cosx+\dfrac{1}{cosx}+sinx+\dfrac{1}{sinx}=\dfrac{10}{3}\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
3.
\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)
...
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
\(\sqrt{2}sinx+sin2x=\sqrt{3}cos2x-\sqrt{6}cosx\)
\(\sqrt{2}sinx+sin2x=\sqrt{3}cos2x-\sqrt{6}cosx\)
\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sinx+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{6}}{2}cosx=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)+2sin\left(x-\dfrac{\pi}{6}\right).cos\left(x-\dfrac{\pi}{6}\right)=0\)
\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)\left[1+\sqrt{2}sin\left(x-\dfrac{\pi}{6}\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
Đến đấy thì dễ rồi.
\(\Leftrightarrow\sqrt{2}\left(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)
Đặt \(x+\dfrac{\pi}{3}=u\Rightarrow2x-\dfrac{\pi}{3}=2u-\pi\)
\(\Rightarrow\sqrt{2}sinu+sin\left(2u-\pi\right)=0\)
\(\Leftrightarrow\sqrt{2}sinu-sin2u=0\)
\(\Leftrightarrow sinu\left(\sqrt{2}-2cosu\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=0\\cosu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=0\\cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình sau
1.\(cos2x-\sqrt{3}sin2x=\sqrt{2}\)
2.\(4sin^2\frac{x}{2}-3\sqrt{3}sinx-2cos^2\frac{x}{2}=4\)
3. \(2\left(sinx+cosx\right)=4sinxcosx+1\)
4. \(cosx-sinx-2sin2x-1=0\)
\(5.\sqrt{3}sin2x+cos2x=2sinx\)
6. \(9sin^2x-5cos^2x-5sinx+4=0\)
7.\(cos^2x-\sqrt{3}sin2x=1+sinx\)
8.\(\frac{3}{cos^2x}=3+2tan^2x\)
1.
\(\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+k\pi\\x=-\frac{7\pi}{24}+k\pi\end{matrix}\right.\)
2.
\(2\left(1-cosx\right)-3\sqrt{3}sinx-\left(1+cosx\right)=4\)
\(\Leftrightarrow cosx+\sqrt{3}sinx=-1\)
\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=-\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
3.
\(4sinx.cosx-2sinx+1-2cosx=0\)
\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
4.
\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)
Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)
5.
\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
6.
\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)
\(\Leftrightarrow14sin^2x-5sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)