Tìm GTNN của biểu thức:
A=\(\frac{x^2-1}{x^2+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTNN của biểu thức:A=/x-1/+/x-2/+/x-3/
cho biểu thức:A=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)
với x>=0
a,Rút gọn
b,Tìm m để có x thỏa mãn x+A=m
c,Tìm GTNN của biểu thức M
tìm GTNN của biểu thức:a)A= 1,5+/3,4-x/ b)B= -3/4 +/5+x/ c) C= -1/ /2x+6/+1
tìm GTLN của biểu thức:a) A=5,5-/2x-1,5/ b)B=10-4./x-2/ c) A=x-/x/
tìm GTNN của biểu thức:A=/x-3/+/x-2/
thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)
dấu = xảy ra <=> tích của chúng = nhau
Tìm GTNN của biểu thức:a)x^2-10x+26+y^2+2y
b)x^2-3x-2
a: =x^2-10x+25+y^2+2y+1
=(x-5)^2+(y+1)^2>=0
Dấu = xảy ra khi x=5 và y=-1
b: x^2-3x-2
=x^2-3x+9/4-17/4
=(x-3/2)^2-17/4>=-17/4
Dấu = xảy ra khi x=3/2
Tìm GTNN của biểu thức:
a)A=x(x+3)(x-1)(x-4)
b)B=B=4x^4+4x^3+5x^2+4x+3
Mình đang cần gấp giúp mình với ạ
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
1.tính nhanh
a,301^2 b,88^2+2×88×12+12^2 c,99×100 153^2+94×153+47^2
2.tìm GTNN của biểu thức:A=x^2-20x+101
B1:
\(a.301^2=\left(300+1\right)^2=300^2+2.300.1+1^2\\ =90000+600+1=90601\\ b.88^2+2.88.12+12^2=\left(88+12\right)^2=100^2=10000\\ c.99.100=100^2-100=10000-100=9900\\ d,153^2+94.153+47^2=153^2+2.153.47+47^2=\left(153+47\right)^2=200^2=40000\)
B2:
\(A=x^2-20x+101\\ =x^2-2.x.10+10^2+1\\ =\left(x-10\right)^2+1\ge1\forall x\in R\left(Vì:\left(x-10\right)^2\ge0\forall x\in R\right)\\ \Rightarrow min_A=1\Leftrightarrow x-10=0\Leftrightarrow x=10\)
cho số thực x thoả mãn 0<x<2. Tìm GTNN của biểu thức:
A= \(\dfrac{4}{2-x}+\dfrac{100}{x}+2021\)
Tìm GTLN của biểu thức:A=\(\frac{2}{x^2+x+1}\)
tìm GTNN của biểu thức:A=\(\frac{x^2+15x+16}{3x}\)
\(A=\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge2\sqrt{\frac{16x}{9x}}+\frac{15}{3}=\frac{23}{3}\)
\(A_{min}=\frac{23}{3}\) khi \(\frac{x}{3}=\frac{16}{3x}\Leftrightarrow x=4\)
Nếu ko có thêm điều kiện gì cho x thì biểu thức này ko tồn tại GTNN