Những câu hỏi liên quan
VH
Xem chi tiết
TD
6 tháng 6 2019 lúc 9:26

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

Bình luận (0)
DY
Xem chi tiết
NL
7 tháng 1 2022 lúc 20:22

Em tham khảo ở đây:

Cho a,b,c > 0 và ab + bc + ac = 1. Chứng minh rằng :\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^... - Hoc24

Bình luận (0)
LA
Xem chi tiết
LC
9 tháng 5 2021 lúc 1:07

\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)

\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)

\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)

\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)

\(\Rightarrow p\le2\sqrt{2}\)

Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)

Bình luận (0)
 Khách vãng lai đã xóa
KG
Xem chi tiết
H24
Xem chi tiết
BD
14 tháng 5 2021 lúc 15:46

2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a)  (AM-GM)

     =4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2)  (AM-GM)

                                =36 (do a2+b2=2)

=> M \(\le\)18

 Dấu bằng có <=> a=b=1

Bình luận (2)
LK
Xem chi tiết
NT
3 tháng 3 2023 lúc 23:50

a: \(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)

b: \(\sqrt{x}+3>=3\)

=>A<=1

Dấu = xảy ra khi x=0

c: \(P=A:\left(B-1\right)=\dfrac{3}{\sqrt{x}+3}:\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}-2}\)

Để P nguyên thì căn x-2\(\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{1;25\right\}\)

Bình luận (0)
HC
Xem chi tiết
NL
21 tháng 3 2022 lúc 14:08

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)

\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)

\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

Bình luận (0)
VH
Xem chi tiết
VH
Xem chi tiết
VH
28 tháng 10 2019 lúc 21:51

Đề thi HSG Toán 9 Huyện Hoàng mia năm 2019-2020 đó 

Bình luận (0)
 Khách vãng lai đã xóa