giải pt
\(\frac{x}{x-3}\)\(-\)\(\frac{x}{x+3}\)=\(\frac{-2x^2+x-3}{9-x^2}\)
Giải pt:
1. x-4=2x+4
2. \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)
3.\(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
4.\(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
1) Ta có: x-4=2x+4
\(\Leftrightarrow x-4-2x-4=0\)
\(\Leftrightarrow-x-8=0\)
\(\Leftrightarrow-x=8\)
hay x=-8
Vậy: S={8}
2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)
\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)
\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)
\(\Leftrightarrow6x-3-2x-6x+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: S={-3}
3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)
Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)
\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)
\(\Leftrightarrow-4x^2-2x-18=0\)
\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)
\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)
Vậy: S=\(\varnothing\)
4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x-1-24+2x=0\)
\(\Leftrightarrow8x-25=0\)
\(\Leftrightarrow8x=25\)
hay \(x=\frac{25}{8}\)
Vậy: \(S=\left\{\frac{25}{8}\right\}\)
giải PT sau :\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)
:\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\)
\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)
\(\Leftrightarrow\) \(\frac{\left(3x+2\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}+\frac{\left(2x+1\right)\left(x+4\right)}{\left(x+4\right)\left(x-2\right)}=\frac{5\left(x+4\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}-\frac{x-32}{\left(x+4\right)\left(x-2\right)}\)
\(\Rightarrow\) (3x + 2)(x - 2) + (2x + 1)(x + 4) = 5(x + 4)(x - 2) - x + 32
\(\Leftrightarrow\) 3x2 - 6x + 2x - 4 + 2x2 + 8x + x + 4 = 5x2 - 10x + 20x - 40 - x + 32
\(\Leftrightarrow\) 5x2 + 5x = 5x2 + 9x - 8
\(\Leftrightarrow\) 5x2 + 5x - 5x2 - 9x + 8 = 0
\(\Leftrightarrow\) -4x + 8 = 0
\(\Leftrightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy S = {2}
\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\) (đkxđ: x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\frac{\left(x+2m\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-m\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{mx\left(x+1\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow\) (x + 2m)(x - 3) + (x - m)(x + 3) = mx(x + 1)
\(\Leftrightarrow\) x2 - 3x + 2mx - 6m + x2 + 3x - mx - 3m - mx2 - mx = 0
\(\Leftrightarrow\) (2 - m)x2 - 9m = 0
Thay m = 1 ta được:
(2 - 1)x2 - 9 . 1 = 0
\(\Leftrightarrow\) x2 - 9 = 0
\(\Leftrightarrow\) (x - 3)(x + 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(KTM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
Vậy S = \(\varnothing\)
Thay m = 2 ta được:
(2 - 2)x2 - 9 . 2 = 0
\(\Leftrightarrow\) -18 = 0
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!!
bài 1 giải pt
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)
2x+3<6-(3-4x)
Bài 1:
a: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)-x\left(x+3\right)=-7x+3\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
=>0x=0(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
b: \(\Leftrightarrow2x+3< 6-3+4x\)
=>2x+3<4x+3
=>-2x<0
hay x>0
1, giải pt sau
a,\(\frac{9}{x}+2=-6\)
b,\(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
c,\(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}\)
a) ĐKXĐ: x≠0
Ta có: \(\frac{9}{x}+2=-6\)
⇔\(\frac{9}{x}+2+6=0\)
⇔\(\frac{9}{x}+8=0\)
⇔\(\frac{9}{x}+\frac{8x}{x}=0\)
⇔9+8x=0
⇔8x=-9
hay \(x=-\frac{9}{8}\)
Vậy: \(x=-\frac{9}{8}\)
b) ĐKXĐ: x≠0;x≠-1;x≠-3
Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
⇔\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)
⇔\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)
⇔\(7x^2+21x-18x+4x\left(x+1\right)=0\)
\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)
⇔\(11x^2+7x=0\)
\(\Leftrightarrow x\left(11x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)
Vậy: \(x=\frac{-7}{11}\)
c) ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)
⇔\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)
\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(x=\frac{-1}{3}\)
Giải pt:
a) \(\frac{x^2+2x-16}{x^2-x-12}+1=\frac{2x+1}{x+3}+\frac{3x-8}{x-4}\)
b) \(\frac{2x-1}{x+2}+\frac{7x+9}{\left(x+2\right)\left(x-1\right)}=\frac{3x-1}{x-1}\)
c) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=\frac{x+20}{1}+\frac{x+19}{2}+\frac{x+18}{3}\)
Giải giúp mình với ạ :((
giải pt
\(\frac{x}{x-3}\)\(-\)\(\frac{x}{x+3}\)=\(\frac{-2x^2+x-3}{9-x^2}\)
<=> x2-3x-x2-3x=-2x2+x-3 (x khác -3 và x khác 3)
<=> 2x2-7x+3=0
\(\Delta=7^2-4.2.3=49-24=25\)=> \(\sqrt{\Delta}=5\)
=> \(\hept{\begin{cases}x_1=\frac{7-5}{4}=\frac{1}{2}\\x_2=\frac{7+5}{4}=3\end{cases}}\)
ĐS: x1=1/2; x2=3
Điều kiện : \(x\ne3;x\ne-3\)\(\frac{x}{x+3}-\frac{x}{x-3}=\frac{2x^2-x+3}{9-x^2}\Leftrightarrow\frac{x}{x+3}-\frac{x}{x-3}-\frac{2x^2-x+3}{9-x^2}=0\Leftrightarrow\frac{x}{x+3}-\frac{x}{x-3}+\frac{2x^2-x+3}{x^2-9}=0\)
\(\Leftrightarrow\frac{x\left(x-3\right)-x\left(x+3\right)+2x^2-x+3}{\left(x+3\right)\left(x-3\right)}=0\Leftrightarrow\frac{x^2-3x-x^2-3x+2x^2-x+3}{\left(x+3\right)\left(x-3\right)}=0\Leftrightarrow\frac{2x^2-7x+3}{\left(x+3\right)\left(x-3\right)}=0\)
\(=>2x^2-7x+3=0\Leftrightarrow2x^2-x-6x+3=0\Leftrightarrow x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)=0\Leftrightarrow\hept{\begin{cases}2x-1=0\Leftrightarrow x=\frac{1}{2}\\x-3=0\Leftrightarrow x=3\end{cases}}\)Đối chiếu điều kiện nên ta loại x=3
Vậy nghiệm của pt là x=1/2
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
giải PT: a, (4x-5)2 (2x-3)(x-1)=9
b,\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}+\frac{2}{x+3}\)
c,(\(\left(\frac{x-1}{99}+\frac{x-99}{1}\right)+\left(\frac{x-3}{97}+\frac{x+97}{3}\right)+\left(\frac{x-5}{93}+\frac{x-95}{5}\right)=6\)
c, Trừ hai vế cho 6
Vế trái thì lấy từng số hạng trừ 1 là được
Giải PT:
a) \(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+80}=\frac{9}{52}\)
b) \(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)
c) \(x^4-3x^3+2x^2-9x+9=0\)
Câu c : \(x^4-3x^3+2x^2-9x+9=0\)
<=>\(x^4-x^3-2x^3+2x^2-9x+9=0\)
<=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)-9\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x^3-2x^2-9\right)=0\)
<=> \(x-1=0\) hoặc \(x^3-2x^2-9=0\)
Nếu x-1=0 <=> x=1
Nếu \(x^3-2x^2-9=0\)
<=> \(x^3-3x^2+x^2-9=0\)
<=>\(x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)=0\)
<=>\(\left(x-3\right)\left(x^2+x+3\right)=0\)
Vì \(x^2+x+3=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\) >0 nên x-3=0 <=> x=3
Vậy \(S=\left\{1;3\right\}\)
Câu b : \(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)
<=> \(4x^2\left(x^2+2x+2\right)=5\left(x^2+2x+1\right)\)
<=> \(4x^4+8x^3+8x^2=5x^2+10x+5\)
<=>\(4x^4+8x^3+3x^2-10x-5=0\)
<=>\(4x^4-4x^3+12x^3-12x^2+15x^2-15x+5x-5=0\)
<=>\(\left(x-1\right)\left(4x^3+12x^2+15x+5\right)=0\)
<=>\(\left(x-1\right)\left(2x+1\right)\left(2x^2+5x+5\right)=0\)
<=>x=1 hoặc \(x=\frac{-1}{2}\)
Phương trình \(2x^2+5x+5=0\) Vô nghiệm