Ôn tập: Phương trình bâc nhất một ẩn

HL

Giải pt:

1. x-4=2x+4

2. \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)

3.\(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

4.\(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)

NT
1 tháng 6 2020 lúc 19:46

1) Ta có: x-4=2x+4

\(\Leftrightarrow x-4-2x-4=0\)

\(\Leftrightarrow-x-8=0\)

\(\Leftrightarrow-x=8\)

hay x=-8

Vậy: S={8}

2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)

\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)

\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)

\(\Leftrightarrow6x-3-2x-6x+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: S={-3}

3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)

Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)

\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)

\(\Leftrightarrow-4x^2-2x-18=0\)

\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)

\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)

Vậy: S=\(\varnothing\)

4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)

\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x-1-24+2x=0\)

\(\Leftrightarrow8x-25=0\)

\(\Leftrightarrow8x=25\)

hay \(x=\frac{25}{8}\)

Vậy: \(S=\left\{\frac{25}{8}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
T8
Xem chi tiết
HP
Xem chi tiết
BC
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
NG
Xem chi tiết
TB
Xem chi tiết
HS
Xem chi tiết
JK
Xem chi tiết