Những câu hỏi liên quan
NH
Xem chi tiết
NT
15 tháng 10 2023 lúc 9:34

a: \(\dfrac{u_n}{u_{n-1}}=\dfrac{3^n}{2^{n+1}}:\dfrac{3^{n-1}}{2^n}\)

\(=\dfrac{3^n}{3^{n-1}}\cdot\dfrac{2^n}{2^{n+1}}=\dfrac{3}{2}>1\)

=>(un) là dãy tăng

c: ĐKXĐ: n>=1

\(u_n=\sqrt{n}-\sqrt{n-1}\)

\(=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}\)

\(\dfrac{u_n}{u_{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}:\dfrac{1}{\sqrt{n-1}+\sqrt{n-2}}\)

\(=\dfrac{\sqrt{n-1}+\sqrt{n-2}}{\sqrt{n-1}+\sqrt{n}}< 1\)

=>Đây là dãy số giảm

Bình luận (0)
H24
Xem chi tiết
DL
8 tháng 2 2022 lúc 22:28

undefined

Bình luận (0)
H24
Xem chi tiết
NL
7 tháng 11 2021 lúc 18:58

Dãy đã cho hiển nhiên là dãy dương

Ta sẽ chứng minh dãy đã cho bị chặn trên bởi 2 hay \(u_n\le2\) với mọi n

- Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (đúng)

- Giả sử điều đó đúng với \(n=k\ge1\) hay \(u_k\le2\)

- Ta cần chứng minh với  \(n=k+1\) cũng đúng

Hay \(u_{k+1}\le2\)

Ta có: \(u_{k+1}=\sqrt{2+u_k}\le\sqrt{2+2}=2\) (đpcm)

Vậy \(u_n\le2\)

Đặt \(v_n=\dfrac{1}{2}u_n\Rightarrow0< v_n\le1\) và \(\left\{{}\begin{matrix}v_1=\dfrac{\sqrt{2}}{2}=cos\left(\dfrac{\pi}{4}\right)\\2v_{n+1}=\sqrt{2+2v_n}\end{matrix}\right.\) 

\(\Rightarrow4v_{n+1}^2=2+2v_n\Rightarrow v_n=2v_{n+1}^2-1\)

Do \(0< v_n\le1\) , đặt \(v_n=cos\left(x_n\right)\) với \(x_n\in\left(0;\pi\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{\pi}{4}\\cos\left(x_n\right)=2cos^2\left(x_{n+1}\right)-1=cos\left(2x_{n+1}\right)\end{matrix}\right.\)

\(\Rightarrow x_n=2x_{n+1}\Rightarrow x_{n+1}=\dfrac{1}{2}x_n\)

\(\Rightarrow x_n\) là CSN với công bội \(\dfrac{1}{2}\)

\(\Rightarrow x_n=\dfrac{\pi}{4}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{\pi}{2^{n+1}}\)

\(\Rightarrow v_n=cos\left(x_n\right)=cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

\(\Rightarrow u_n=2v_n=2cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

Dãy \(\dfrac{\pi}{2^{n+1}}\) giảm và thuộc \(\left(0;\dfrac{\pi}{2}\right)\) nên \(cos\left(\dfrac{\pi}{2^{n+1}}\right)\) tăng

Do đó dãy số đã cho là dãy tăng.

P/s: đây là cách làm hoàn chỉnh có thứ tự (nhược điểm là rất dài). Có 1 cách khác đơn giản hơn là bằng 1 phép màu nào đó ngay từ đầu bạn đưa ra ngay dự đoán công thức tổng quát của dãy số là \(2cos\left(\dfrac{\pi}{2^{n+1}}\right)\) rồi chứng minh nó bằng quy nạp cũng được. Như vậy sẽ rất ngắn, cả bài chỉ 4-5 dòng nhưng lời giải hơi đột ngột

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 10 2023 lúc 6:06

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 10:51

Cách 1:

Ta có: \({y_n} = \sqrt {n + 1}  - \sqrt n  = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {n + 1} \right) - n}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{1}{{\sqrt {n + 1}  + \sqrt n }}\)

\( \Rightarrow {y_{n + 1}} = \frac{1}{{\sqrt {\left( {n + 1} \right) + 1}  - \sqrt {n + 1} }} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\)

Xét hiệu:

\(\begin{array}{l}{y_{n + 1}} - {y_n} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }} - \frac{1}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {\sqrt {n + 1}  + \sqrt n } \right) - \left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}\\ = \frac{{\sqrt {n + 1}  + \sqrt n  - \sqrt {n + 2}  - \sqrt {n + 1} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}} = \frac{{\sqrt n  - \sqrt {n + 2} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}\end{array}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\begin{array}{l}\left. \begin{array}{l}0 < n < n + 2 \Leftrightarrow \sqrt n  < \sqrt {n + 2}  \Leftrightarrow \sqrt n  - \sqrt {n + 2}  < 0\\\sqrt {n + 2}  > 0,\sqrt {n + 1}  > 0,\sqrt n  > 0 \Leftrightarrow \left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right) > 0\end{array} \right\}\\ \Rightarrow \frac{{\sqrt n  - \sqrt {n + 2} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}} < 0\end{array}\)

Vậy \({y_{n + 1}} - {y_n} < 0 \Leftrightarrow {y_{n + 1}} < {y_n}\). Vậy dãy số \(\left( {{y_n}} \right)\) là dãy số giảm.

Bình luận (0)
QL
22 tháng 9 2023 lúc 10:51

Cách 2:

Ta có: \({y_n} = \sqrt {n + 1}  - \sqrt n  = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {n + 1} \right) - n}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{1}{{\sqrt {n + 1}  + \sqrt n }}\)

\( \Rightarrow {y_{n + 1}} = \frac{1}{{\sqrt {\left( {n + 1} \right) + 1}  - \sqrt {n + 1} }} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\begin{array}{l}0 < n < n + 2 \Leftrightarrow \sqrt n  < \sqrt {n + 2}  \Leftrightarrow \sqrt {n + 1}  + \sqrt n  < \sqrt {n + 2}  + \sqrt {n + 1} \\ \Leftrightarrow \frac{1}{{\sqrt {n + 1}  + \sqrt n }} > \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }} \Leftrightarrow {y_n} > {y_{n + 1}}\end{array}\)

Vậy dãy số \(\left( {{y_n}} \right)\) là dãy số giảm.

Bình luận (0)
MM
Xem chi tiết
AH
19 tháng 12 2021 lúc 19:54

Lời giải:

Có:
\(u_{n+1}-u_n=\sqrt{n+4}-\sqrt{n+1}-(\sqrt{n+3}-\sqrt{n})\)

\(=(\sqrt{n+4}-\sqrt{n+3})-(\sqrt{n+1}-\sqrt{n})\)

\(=\frac{1}{\sqrt{n+4}+\sqrt{n+3}}-\frac{1}{\sqrt{n+1}+\sqrt{n}}<0\) với mọi $n\in\mathbb{N}^*$

$\Rightarrow u_{n+1}< u_n$ với mọi $n\in\mathbb{N}^*$

Do đó dãy đã cho là dãy giảm.

Bình luận (0)
NN
Xem chi tiết
NT
10 tháng 9 2023 lúc 16:17

\(u_n=\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}=\dfrac{3^{n+1}-1}{2^{n+1}}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{3^{n+1}-1}{2^{n+1}}-\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{2^n.3^{n+1}-2^n-2^{n+1}.3^n+2^{n+1}}{2^n.2^{n+1}}\)

\(=\dfrac{2^n.3^n\left(3-2\right)-2^n\left(2-1\right)}{2^{2n+1}}\)

\(=\dfrac{2^n.\left(3^n-1\right)}{2^{2n+1}}\)

\(=\dfrac{\left(3^n-1\right)}{2}>0\left(n>1\right)\)

Vậy dãy \(u_n\)đã cho tăng

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 7 2017 lúc 12:58

Chọn A

Bình luận (0)
NK
Xem chi tiết