Những câu hỏi liên quan
TO
Xem chi tiết
HN
10 tháng 6 2017 lúc 17:48

Ta có: \(a+b+c=0\)

=> \(a+b=-c;a+c=-b;b+c=-a\)

Do đó:

\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)

\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)

\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)

=> M=N=P ( = abc)

Bình luận (0)
TT
10 tháng 6 2017 lúc 15:56

Ta có : a + b + c = 0

=> a + b = -c ; a + c = -b ; b + c = -a

Thế vào M, N, P :

=> M = a.(-c).(-b) = -abc

N = b.(-a).(-c) = -abc

P = c.(-b).(-a) = -abc

Vậy M = N = P.

Bình luận (1)
VQ
Xem chi tiết
LN
28 tháng 7 2020 lúc 9:21

không biêt đâu

Bình luận (0)
 Khách vãng lai đã xóa
ND
28 tháng 7 2020 lúc 9:23

Bài làm:

Ta có: \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

Thay vào ta được: \(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\N=b\left(-a\right)\left(-c\right)=abc\\P=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)

\(\Rightarrow M=N=P\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
28 tháng 7 2020 lúc 9:24

Đề bạn bị nhầm 1 chút nhé, N = b(b+c)(a+b)

Bình luận (0)
 Khách vãng lai đã xóa
MM
Xem chi tiết
NQ
5 tháng 7 2017 lúc 20:23

a+b+c=0 <=>a+b = -c , b+c= -a , c+a = -b

Khi đó thay a+b = -c, b+c = -a , c+a = -b vào thì ta được 

M=-abc

N=-abc

P=-abc

=> M=N=P

Bình luận (0)
OP
5 tháng 7 2017 lúc 20:26

\(M=a\left(a+b\right)\left(a+c\right)\)

\(=a^3+a^2+a^2b+abc\)

\(=a^2\left(a+b+c\right)+abc=abc\)

\(N=b\left(b+c\right)\left(b+a\right)\)

\(=b^3+b^2c+b^2a+abc\)

\(=b^2\left(a+b+c\right)+abc=abc\)

\(P=c\left(c+a\right)\left(c+b\right)\)

\(=c^3+c^2a+c^2b+abc\)

\(=c^2\left(a+b+c\right)+abc=abc\)

\(\Rightarrow M=N=P\)

Bình luận (0)
II
5 tháng 7 2017 lúc 20:30

Ta có: 

a + b + c =0 

=> a + b = -c 

a+ c = - b 

b + c = - a 

Do đó:

M = a ( a + b) ( a + c ) = a ( - c ) (   - b ) = abc

N = b ( b+c ) ( b + a ) = b ( - a) (  - c) = abc 

P = c ( c + a) ( c + b) = c ( - b) ( - a) = abc 

<=> M = N = P ( = abc) 

^^ Chúc bạn học tốt!!!   

Bình luận (0)
ZZ
Xem chi tiết
NH
22 tháng 2 2017 lúc 22:23

Chú ý: a+b=-c

b+c=-a

a+c=-b

thay các biểu thức này vào thì ta được M=N=P=abc

Bình luận (0)
TM
23 tháng 2 2017 lúc 12:36

Từ a+b+c=0 => a+b=-c; a+c=-b; b+c=-a

Mặt khác: M=a(a+b)(a+c)=a(-c)(-b)=abc

N=b(b+c)(b+a)=b(-a)(-c)=abc

P=c(c+a)(c+b)=c(-b)(-a)=abc

=>M=N=P (đpcm)

Bình luận (0)
KT
Xem chi tiết
ST
26 tháng 7 2018 lúc 14:14

Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\) (1)

Thay (1) vào M,N,P ta có:

 \(\hept{\begin{cases}M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right)\left(-b\right)=abc\\N=b\left(b+c\right)\left(b+a\right)=b.\left(-a\right).\left(-c\right)=abc\\P=c\left(c+a\right)\left(c+b\right)=c.\left(-b\right).\left(-a\right)=abc\end{cases}\Rightarrow M=N=P\left(đpcm\right)}\)

Bình luận (0)
H24
31 tháng 8 2018 lúc 14:37

Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\)(1)

Thay (1) vào M, N, P, ta có:

\(\hept{\begin{cases}M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right)\left(-b\right)=abc\\N=b\left(b+c\right)\left(b+a\right)=b.\left(-a\right)\left(-c\right)=abc\\P=c\left(c+a\right)\left(c+b\right)=c.\left(-b\right)\left(-a\right)=abc\end{cases}\Rightarrow M=N=P\left(đpcm\right)}\)

Bình luận (0)
NN
Xem chi tiết
DL
27 tháng 9 2016 lúc 22:26

Vì a+b+c=0 nên a+b=-c (1); a+c=-b(2) ; b+c=-a(3)

M=a(a+b)(a+c)(4)

Thay (1);(2) vào (4) ta được: M=a*(-c)*(-b)=a*b*c

N=b(b+c)(b+a)(5)

Thay (3);(1) vào (5) ta được : N=b*(-a)*(-c)=a*b*c

P=c(c+a)(c+b)(6)

Thay (2);(3) vào (6) Ta được: P=c*(-b)*(-a)=a*b*c

Vậy M=N=P(=a*b*c)

Bình luận (0)
CT
Xem chi tiết
LN
28 tháng 7 2020 lúc 9:22

không đâu

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
TT
22 tháng 6 2015 lúc 12:57

1, a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a

thay vào M ta có

 M = a . -c . -b = abc (1)

Thay tương tự vào  N , P ta cũng đc N =abc (2)

                                                       P =abc( 3)

Từ 1 2 và 3 => ĐPCM

Bình luận (0)
TT
22 tháng 6 2015 lúc 12:59

2,

a + b +c = 2P

=>  b + c = 2P -a

=> ( b + c)^2 = ( 2P -a)^2

=> b^2 + 2bc+ c^2 = 4p^2 - 4pa + a^2

=> 2bc+ b^2 + c^2 -a^ 2 = 4p^2 - 4pa

=> 2bc + b^2 + c^2 -a ^ 2 = 4p(p-a)=> ĐPCM

Bình luận (0)
AT
22 tháng 6 2015 lúc 13:20

1.

Ta có a+b+c=0

=> a+c=b ; a+b=c ; c+b=a

M= a(a+b)(a+c)=a.c.b

N= b(b+c)(a+b)=b.a.c

P= c(c+a)(c+b)=c.b.a

                            

=> M=N=P=abc

Bình luận (0)
LT
Xem chi tiết
NL
20 tháng 10 2019 lúc 13:29

a/

\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng

Bình luận (0)
 Khách vãng lai đã xóa