Cho bốn điểm A,B,C,D thuộc đường tròn O sao cho AB=CD.CMR\(\widehat{AOB}=\widehat{COD}\)
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho AB = CD.
Chứng minh rằng : \(\widehat{AOB}=\widehat{COD}\)
\(\Delta AOB=\Delta COD\left(c.c.c\right)\) suy ra \(\widehat{AOB}=\widehat{COD}\)
sao ngắn thế bạn
thế này mới đúng nè
??????????????(tự làm lấy)
Cho 4 điểm A,B,C,D thuộc đường tròn (O) sao cho AB = CD . CMR: \(\widehat{AOB}=\widehat{COD}\)
Xét \(\Delta AOB\) và \(\Delta COD\) có :
\(AO=OD\)
\(OC=OB\)
\(AB=CD\)
\(\Rightarrow\Delta AOB=\Delta COD\left(c-c-c\right)\)
=) \(\widehat{AOB}=\widehat{COD}\)
tam giác AOB = tam giác COD ( c.c.c )
suy ra góc AOB = góc COD ( 2 góc tương ứng )
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho BC = DA.
\widehat{\text{BOC}}BOC bằng góc nào dưới đây?
\widehat{\text{BOA}}BOA.
\widehat{\text{COD}}COD.
\widehat{\text{DOA}}DOA
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho AB = CD. Chứng minh rằng ∠(AOB) = ∠(COD)
Xét ΔAOB và ΔCOD có:
OA = OC (cùng bằng bán kính đường tròn)
OB = OD (cùng bằng bán kính đường tròn)
AB = CD (gt)
⇒ ΔAOB = ΔCOD (c.c.c)
⇒ ∠AOB = ∠COD (hai góc t.ư)
Cho 5 điểm A,B,C,D,E theo thứ tự đó trên đường thẳng a và điểm O nằm ngoài đường thẳng a sao cho: \(4\widehat{AOB}=3\widehat{BOC;}5\widehat{COD}=4\widehat{BOC};6\widehat{DOE}=5\widehat{BOC};\widehat{DOE}-\widehat{AOB}=5^o.\)
Tính số đo các góc:\(\widehat{AOB};\widehat{BOC};\widehat{COD};\widehat{DOE}\)
Cho bốn điểm A, B, C, D theo thứ tự thuộc đường thẳng d. Điểm O nằm ngoài đường thẳng d. Biết \(\widehat{AOB}\) = 40 độ, \(\widehat{BOC}\) = 50 độ, \(\widehat{AOD}\) = 120 độ. Tính \(\widehat{AOC}\), \(\widehat{COD}\)
cho 4 điểm A,B,C,D thuộc đường thẳng tròn tâm O sao cho AB=CD chứng minh rằng
a, tam giac AOB=tam giac COD
b, AOB=COD
a: Xét ΔAOB và ΔCOD có
OA=OC
OB=OD
AB=CD
Do đó: ΔAOB=ΔCOD
b: Ta có: ΔAOB=ΔCOD
nên \(\widehat{AOB}=\widehat{COD}\)
Cho một điểm O ở ngoài đường thẳng xy , hạ OA vuông góc với xy \(\left(A\in xy\right)\). Trên tia Ay lần lượt lấy các điểm B,C,D sao cho AB=BC=CD .
Chửng minh rằng :\(\widehat{AOB}>\widehat{BOC}>\widehat{COD}\)
cho 1 điểm O nằm ngoài đường thẳng xy . Hạ OA vuông góc với xy . Trên tia Ay lấy lần lượt các điểm B,C,D sao cho AB=BC=CD . Chứng minh rằng \(\widehat{AOB}\)>\(\widehat{BOC}\)>\(\widehat{COD}\)