c/m đa thức Ax =x^4-10x^3+30 ko có nghiệm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho hai đa thức
Ax= \(13x^4+3x^2+15x-8x-7-7x+7x^2-10x^4\)
Bx= \(-4x^4-10x^2+10+5x^4-3x-18+30-5x^2\)
thu gọn và sắp xếp mỗ đa thức theo lũy thừa giảm dần của biếntính Cx=Ax+BxDx=Bx-AxChứng tỏ rằng x=-1vaf x=1 là nghiệm của Cx nhưng không là nghiệm của Dxa,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)
A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7
B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)
B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)
B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22
b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15
c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7
D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)
D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29
d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)
cho đa thức x2-5x+1 có 2 nghiệm là 2 nghiệm của đa thức x3+ax2+bx+c, chứng minh đa thức ax3+bx2+6cx -4 có ít nhất 2 nghiệm phân biệt
bạn sửa 2 nghiệm phân biệt thành 1 nghiệm nhá
1. Cho đa thức H(x)=ax2 - x + 1 . Tìm a biết H(x) có một nghiệm bằng 2 ...
2. Chứng minh f(x)=x4 + 101 không có nghiệm
3. -1; 3 có là nghiệm của đa thức g(x)= -2-7x+8 ko ?
1/ Ta có H (x) có một nghiệm bằng 2
=> H (2) = 0
=> \(4a-2+1=0\)
=> \(4a-\left(2-1\right)=0\)
=> \(4a-1=0\)
=> \(4a=1\)
=> \(a=\frac{1}{4}\)
Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.
2/
Ta có \(x^4\ge0\)với mọi giá trị của x
=> \(x^4+101>0\)với mọi giá trị của x
=> f (x) không có nghiệm (đpcm)
3/
Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)
=> 1 không phải là nghiệm của đa thức g (x)
và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)
=> 3 không phải là nghiệm của đa thức g (x)
2. Chứng minh f(x)=x4 + 101 không có nghiệm
Ta có:x4+101=0
=>x4=-101
=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0
tìm a ko âm của đa thưc M(x)=(ax)^2-(-a+5),biết đa thức có nghiệm là 1
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
a. Tìm nghiệm của đa thức x2-10x
b. N(x) = (ax2)-ax
Tìm a biết N(-1)=0
Giải:
a) \(x^2-10x\)
Để đa thức trên có nghiệm thì \(x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy ...
b) Ta có: \(N\left(x\right)=\left(ax^2\right)-ax\)
Mà \(N\left(-1\right)=0\)
\(\Leftrightarrow\left[a\left(-1\right)^2\right]-a\left(-1\right)=0\)
\(\Leftrightarrow a+a=0\)
\(\Leftrightarrow2a=0\)
\(\Leftrightarrow a=0\)
Vậy ...
Cho các đa thức P(x) = x4 + 10x3 + 25x2 và Q(x) = x2 + 5x + 12. Tìm nghiệm của đa thức P(x) - 2Q(x)
Ta có: \(P\left(x\right)=x^4+10x^3+25x^2=x^2\left(x^2+10x+25\right)=x^2\left(x+5\right)^2=\left(x^2+5x\right)^2\)
\(P\left(x\right)-2Q\left(x\right)=0\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x+12\right)=0\)
Đặt \(x^2+5x=a\) phương trình trên trở thành:
\(a^2-2\left(a+12\right)=0\Leftrightarrow a^2-2a-24=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x=6\\x^2+5x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-6=0\\x^2+5x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-6\\x=-1\\x=-4\end{matrix}\right.\)
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
c. x = 3, x = -3 có là nghiệm của đa thức N(x) không ? Vì sao ?
c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)