Tính
a)(2x^2+y).(2x^2-y)-4x^2+y^2
b)(2x^2+y)^2-(2x^2-y^2)
c)(2x+1)(2x-1)-4x^2
d)(2x^3y+y)^2-(y-2x^3y)^2
Tính
a)(2x+1).(2x-1)-4x^2
b)(2x^2+y).(2x^2-y)-4x^2+y^2
c)(2x^2+y)^2-(2x^2-y)^2
d)(2x^3y+y)^2_(y-2x^3y)^2
a/ \(\left(2x+1\right)\left(2x-1\right)-4x^2=\left(2x\right)^2-1^2-4x^2\)
\(=4x^2-1-4x^2\)
b/ \(\left(2x^2+y\right)\left(2x^2-y\right)-4x^2+y^2\)
\(=\left(2x^2\right)^2-y^2-4x^2+y^2=4x^4-y^2-4x^2+y^2=4x^4-4x^2\)
c/ \(\left(2x^2+y\right)^2-\left(2x^2-y\right)^2\)
\(=\left(2x^2+y+2x^2-y\right)\left(2x^2+y-2x^2+y\right)\)
\(=4x^2\cdot2y=8x^2y\)
d/ \(\left(2x^3y+y\right)^2-\left(y-2x^3y\right)^2=\left(2x^3y+y\right)^2-\left(2x^3y-y\right)^2\)
\(=\left(2x^3y+y+2x^3y-y\right)\left(2x^3y+y-2x^3y+y\right)\)
\(=4x^3y\cdot2y=8x^3y^2\)
38. Chọn câu sai:
A. 16x^2 (x-y) - x + y= (2x-1) (2x+1)(4x^2+1)(x-y)
B. 16x^3 - 54y^5 = 2(2x -3y) (4x^2 + 6xy + 9y^2)
C. 16x^5 - 54y = 2(2x-3y) (2x + 3y)^2
D. 16x^4 (x-y) - x + y = (4x^2 -1 (4x^2 +1) (x-y)
a) (x + 2)2
b) (2x + y)2
c) (x - 3y)2
d) (1/2x - y)2
e) (x2 - y)2
a: \(\left(x+2\right)^2=x^2+2\cdot x\cdot2+2^2=x^2+4x+4\)
b: \(\left(2x+y\right)^2=\left(2x\right)^2+2\cdot2x\cdot y+y^2=4x^2+4xy+y^2\)
c: \(\left(x-3y\right)^2=x^2-2\cdot x\cdot3y+\left(3y\right)^2=x^2-6xy+9y^2\)
d: \(\left(\dfrac{1}{2}x-y\right)^2=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{1}{4}x^2-xy+y^2\)
e: \(\left(x^2-y\right)^2=\left(x^2\right)^2-2\cdot x^2y+y^2=x^4-2x^2y+y^2\)
a) \(\left(x+2\right)^2\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=x^2+4x+4\)
b) \(\left(2x+y\right)^2\)
\(=\left(2x\right)^2+2\cdot2x\cdot y+y^2\)
\(=4x^2+4xy+y^2\)
c) \(\left(x-3y\right)^2\)
\(=x^2-2\cdot x\cdot3y+\left(3y\right)^2\)
\(=x^2-6xy+9y^2\)
d) \(\left(\dfrac{1}{2}x-y\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{x^2}{4}-xy+y^2\)
e) \(\left(x^2-y\right)^2\)
\(=\left(x^2\right)^2-2\cdot x^2\cdot y+y^2\)
\(=x^4-2x^2y+y^2\)
a)(x+2)²=x²+2×x×2+2²=x²+4x+2
b)(2x+y)²=(2x)²+2×2x×y+y²=4x²+4xy+y²
c)(x-3y)²=x²-2×x×3y+(3y)²=x²-6xy+9y
d)(1/2x-y)²=(1/2x)²-2×1/2x×y+y²=1/4x²-xy+y²
e)(x²-y)²=(x²)²-2×x²×y+y²=x⁴-2x²y+y²
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
Tính
a. (x-y) (2x + 3y)
b. (4x²-4x+1)=(2x-1)
C. x+1/x-1 - x-1/x+1 - 4/x^2
a) (x-y)(2x+3y)=2x2+3xy-2xy+3y2=2x2+xy+3y2
b) (2x-1)2-(2x-1)=0
<=> 2x-1=0 <=> x=\(\dfrac{1}{2}\)
a) Ta có: (x-y)(2x+3y)
\(=2x^2+3xy-2xy-3y^2\)
\(=2x^2+xy-3y^2\)
b) Ta có: \(4x^2-4x+1=2x-1\)
\(\Leftrightarrow4x^2-4x+1-2x+1=0\)
\(\Leftrightarrow4x^2-4x-2x+2=0\)
\(\Leftrightarrow4x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{1;\dfrac{1}{2}\right\}\)
Khai triển (2x+y)^2 được kết quả là:
A.2x^2+2xy+y^2
B.2x^2+4xy+y^2
C.4x^2+xy+y^2
D.4x^2+4xy+y
\(\left(2x+y\right)^2=4x^2+4xy+y^2\)
Đáp án là: 4x^2 + 4xy + y^2
Bạn có ghi đáp án để chọn không vậy
Tính giá trị biểu thức:
a) [ 12 ( 2 x + 3 y ) 3 - 18 ( 2 x + 3 y ) 2 ]:(-6x - 9y) tại x = 3 2 ;y = l;
b) [ ( 2 x - y ) 4 + 8 ( y - 2 x ) 2 - 2x + y]: (2y - 4x) tại x = 1; y = -2.
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i
CMR a.(x-2)(2x+2x^2)/(x+1)(4x-x^3)=-2/x+2
b. x^2+y^2+2xy-1/x^2-y^2+1+2x=x+y-1x+1-y
c(x^2+2)^2-4x^2/y(x^2+2)-2xy-(x-1)^2-1
d 3y-2--3xy+2x/1-3x-x^3+3x^2=3y-2/(1-x)^2