Phân tích thành nhân tử:
`4(x-2)(x+1)+(2x-4)^2 +(x+1)^2`
`x^9 -x^7 -x^6 -x^5 +x^4 +x^3 +x^2 -1`
phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung : 1) (x-1)¹-(x²-1)+(x³-1)
2) (x²-16)+(4-x)
3) (2x-5)² -2x+5
4) (x³-27)-2(x²-9)
5) (x-2)(x²-2x+7)+2(x-2)(x+1)-3(2-x)
6) (x²-9)+(3-x)(x²+x)
7) x²-4x+(3x-12)3
Mọi ng ơi, đang cần gấp
Bài 1: Phân tích thành nhân tử 3) x ^ 2(x - 1) + 2x * (1 - x) 5) y ^ 2(x ^ 2 + y) - zx ^ 2 - zy 7) 5(x + y) ^ 2 + 15(x + y) 9) 7x(y - 4) ^ 2 - (4 - y) ^ 3; 11)(x+1)(y-2)-(2-y)^ 2 2) 5x(x - 2) - 3x ^ 2(x - 2) 4) 3x(x - 5y) - 2y(5y - x) 6) b(a - c) + 5c - 5a 8) 9x(x - y) - 10(y - x) ^ 2 10) (a - b) ^ 2 - (a + b)(b - a) 12) 2x(x - 3) + y(x - 3) + (3 - x)
Phân tích đa thức thành nhân tử (đặt ẩn phụ)
a) (6x+7)^2(3x+4)(x+1)-6
b) (x-2)^2(2x-5)(2x-3)-5
c) (2x-1)(x-1)(x-3)(2x+3)+9
d) (4x+1)(12x-1)(3x+2)(x+1)-4
Phân tích đa thức thành nhân tử
a, x^7+x^5+1
b,4x^4-32x^2+1
c, x^6+27
d, 3(x^4+x^2+1) -( x^2+x+1)
e, ( 2x^2-4)^2 +9
Giúp mình vs mình đang cần gấp
a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1
=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1
=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)
=(x2+x+1)(x5-x4+x3-x+1)
b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)
=(2x2-6x+1)(2x2+6x+1)
c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)
d)3(x4+x2+1)-(x2+x+1)
=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2
=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)
=(x2+x+1)(3x2-3x+2)
e)bạn tự làm nhé
Các bạn làm hộ mình với phân tích thành nhân tử
1:X^6+2x^5+x^4-2x^3-2x^2+1
2:(x^2+x+1)(x^2+x+2)-12
3:(x+1)(x+3)(x+5)(x+7)+15
2: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
Đặt \(x^2+x+1=a\)ta có
\(a\left(a+1\right)-12=a^2+a-12=a^2+4a-3a-12=a\left(a+4\right)-3\left(a+4\right)=\left(a+4\right)\left(a-3\right)\)
Thay \(a=x^2+x+1\)ta được
\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)Kl...
3. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+7+8\right)+15\)
Đặt \(x^2+8x+7=a\) Ta có
\(a\left(a+8\right)+15=a^2+8a+15=a^2+5a+3a+15=a\left(a+5\right)+3\left(a+5\right)=\left(a+5\right)\left(a+3\right)\)
Thay \(a=x^2+8x+15\)ta được
\(\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)
phân tích đa thức thành nhân tử
1)2x^2+3x-5
2)16-5x^-3
3)x^2+x-6
4)x^2+8x-9
5)x^2+x-12
6)x^8+1024
7)x^7+x^2+1
8)x^8+3x^4+4
9)(x^2+x+1)(x^2+x+2)-12
10)x(x+1)(x+2)(x+3)+1
11)x^4+6x^3+11x^2+6x+1
12)3x^2+11x^3-7x^2-2x+1
1) Ta có : 2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (x - 1) (2x + 5)
3) x2 + x - 6
= x2 + 2x - 3x - 6
= x(x + 2) - (3x + 6)
= x(x + 2) - 3(x + 2)
= (x - 3)(x + 2)
phân tích đa thức thành nhân tử:
M=x^9-x^7+x^6-x^5-x^4+x^3-x^2+1
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Bài 2:Phân tích đa thức sau thành nhân tử:
6,(x+2).(x+3).(x+4)
7,x^2-2xy+y^2+3x-3y
8,x^4+4
9,4x.(x+1)^2-5x^2.(x+1)-4.(x+1)
10,(1+2x).(1-2x)-(x+2).(x-2)
11,a^2-2a-46^2-46
7,x2-2xy+y2+3x-3y=(x-y)2+3(x-y)=(x-y)(x-y+3)
8,x4+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2-2x+2)(x2+2x+2)
9,4x(x+1)2-5x2(x+1)-4.(x+1)=(x+1)\(\left[4x\left(x+1\right)-5x^2-4\right]\)=(x+1)(4x2+4x-5x2-4)=(x+1)(-x2+4x-4)=-(x+1)(x-2)2
7: \(x^2-2xy+y^2+3x-3y\)
\(=\left(x-y\right)^2+3\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+3\right)\)
8: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
9: \(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^2+4x-5x^2-4\right)\)
\(=\left(x+1\right)\left(-x^2+4x-4\right)\)
\(=-\left(x+1\right)\left(x-2\right)^2\)
10: \(\left(1+2x\right)\left(1-2x\right)-\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x^2+4\)
\(=-5x^2+5\)
\(=-5\left(x-1\right)\left(x+1\right)\)