Những câu hỏi liên quan
PB
Xem chi tiết
NM
19 tháng 12 2021 lúc 22:00

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

Bình luận (0)
NT
19 tháng 12 2021 lúc 22:01

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)

Bình luận (0)
TA
Xem chi tiết
KR
13 tháng 12 2022 lúc 18:41

so sánh: \(2^{91}\) và \(5^{35}\)

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\) 

mà \(8192>3125\) \(\Rightarrow8192^7>3125^7\)

vậy, \(2^{91}>5^{35}\)

Bình luận (0)
H24
Xem chi tiết
NM
20 tháng 10 2021 lúc 16:05

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

Bình luận (0)
DK
Xem chi tiết
PD
30 tháng 12 2018 lúc 8:40

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 8 2019 lúc 7:48

Đáp án cần chọn là: D

Bình luận (0)
PN
Xem chi tiết
NT
12 tháng 8 2023 lúc 14:31

 a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)

b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)

c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)

\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)

\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)

Tương tự câu d,e,f bạn tự làm nhé

Bình luận (0)
Xem chi tiết
NT
3 tháng 4 2021 lúc 22:15

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bình luận (0)
NT
3 tháng 4 2021 lúc 22:11

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bình luận (0)
NT
3 tháng 4 2021 lúc 22:13

Bài 1: 

c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)

Bình luận (0)
Xem chi tiết
NT
4 tháng 4 2021 lúc 14:08

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

Bình luận (0)
H24
4 tháng 4 2021 lúc 14:48

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

Bình luận (0)
H24
4 tháng 4 2021 lúc 15:24

c,xy-2x+5y-12=0

xy-2x+5y-12+2=0+2

xy-2x+5y-10=2

xy-2x+5y-5.2=-2

x.(y-2)+5.(y-2)=2

(y-2).(x+5)=2

Sau đó bạn tự lập bảng 

Bình luận (0)
VK
Xem chi tiết