Những câu hỏi liên quan
NT
Xem chi tiết
H9
16 tháng 8 2023 lúc 8:55

a) Ta có:

\(2=1+1=1+\sqrt{1}\)

Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)

\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)

\(\Rightarrow2< \sqrt{2}+1\)

b) Ta có:

\(1=2-1=\sqrt{4}-1\)

Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)

\(\Rightarrow1>\sqrt{3}-1\)

c) Ta có:

\(10=2\cdot5=2\sqrt{25}\)

Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)

\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)

\(\Rightarrow10< 2\sqrt{31}\)

d) Ta có:

\(-12=-3\cdot4=-3\sqrt{16}\)

Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)

\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)

\(\Rightarrow-12< -3\sqrt{11}\)

Bình luận (0)
H24
Xem chi tiết
MP
20 tháng 8 2023 lúc 20:16

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).

 

 

Bình luận (0)
KF
Xem chi tiết
MH
27 tháng 9 2023 lúc 21:24

a) \(6=\sqrt[3]{6^3}=\sqrt{216}>\sqrt[3]{208}=2\sqrt[3]{26}\)

b) \(2\sqrt[3]{6}=\sqrt[3]{2^3.6}=\sqrt[3]{48}>\sqrt[3]{47}\)

Bình luận (0)
QL
Xem chi tiết
HM
19 tháng 9 2023 lúc 20:11

a)      Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).

b)      Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).

c)      Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).

Bình luận (0)
NT
19 tháng 9 2023 lúc 20:12

a: -2/3<0<1/200

b: 139/138>1

1375/1376<1

=>139/138>1375/1376

c: -11/33=-1/3=-25/75<-25/76

Bình luận (0)
QL
Xem chi tiết
HM
19 tháng 9 2023 lúc 20:11

a)      Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)

Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).

b)      Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).

c)      Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)  

Do  \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .

d)      Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;

\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).

Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).

Bình luận (0)
QL
Xem chi tiết
HM
9 tháng 10 2023 lúc 23:09

a) \(6 > 5\)

b) \( - 5\) là số nguyên âm nên \( - 5 < 0\)

c) \( - 6\) là số nguyên âm, 5 là số nguyên dương nên \( - 6 < 5\)

d) \( - 8\) và \( - 6\) là các số nguyên âm và có số đối lần lượt là 8 và 6.

\(8 > 6 \Rightarrow  - 8 <  - 6\)

e) 3 là số nguyên dương, \( - 10\) là số nguyên âm nên \(3 >  - 10\)

g) \( - 2\) và \( - 5\) là các số nguyên âm có số đối lần lượt là 2 và 5.

\(2 < 5 \Rightarrow  - 2 >  - 5\)

Bình luận (0)
PM
Xem chi tiết
H24
19 tháng 6 2021 lúc 14:03

`A=(2-1)(2+1)(2^2+1)...(2^16+1)`

`=(2^2-1)(2^2+1)....(2^16+1)`

`=(2^4-1)....(2^16+1)`

`=2^32-1<2^32`

`=>A<B`

Bình luận (0)
H24
Xem chi tiết
HM
26 tháng 8 2023 lúc 9:32

a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)

b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)

Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)

Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)

c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)

Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)

Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)

Bình luận (0)
LH
Xem chi tiết
NM
23 tháng 10 2021 lúc 8:41

\(1,\\ a,=\left[x^3\left(x-2\right)-4x\left(x-2\right)\right]:\left(x^2-4\right)\\ =x\left(x^2-4\right)\left(x-2\right):\left(x^2-4\right)=x\left(x-2\right)\\ b,=\left(2014-14\right)^2=2000^2=4000000\\ 2,\\ A=2015\cdot2013\cdot\left(2014^2+1\right)\\ A=\left(2014^2-1\right)\left(2014^2+1\right)\\ A=2014^4-1< B=2014^4\)

Bình luận (0)