Những câu hỏi liên quan
TA
Xem chi tiết
DH
30 tháng 8 2023 lúc 20:58

Thay A(0,1) vào hàm số y ta có: 

\(\left(m-3\right).4+3m-1=1\Leftrightarrow4m-12+3m-1=0\)

\(\Leftrightarrow7m-13=0\Leftrightarrow7m=13\Leftrightarrow m=\dfrac{13}{7}\)

Bình luận (1)
TT
Xem chi tiết
NT
24 tháng 1 2021 lúc 20:20

Để hàm số y=(m-2)x+4+m là hàm số bậc nhất thì \(m-2\ne0\)

hay \(m\ne2\)

a) Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì 

Thay x=1 và y=2 vào hàm số y=(m-2)x+4+m, ta được

\(\left(m-2\right)\cdot1+4+m=2\)

\(\Leftrightarrow m-1+4+m=2\)

\(\Leftrightarrow2m+3=2\)

\(\Leftrightarrow2m=-1\)

hay \(m=-\dfrac{1}{2}\)(nhận)

Vậy: Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì \(m=-\dfrac{1}{2}\)

Bình luận (2)
TA
Xem chi tiết
NT
5 tháng 9 2023 lúc 22:14

1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)

Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi

\(m.\left(-1\right)+1=-1\)

\(\Leftrightarrow-m=-2\)

\(\Leftrightarrow m=2\)

Vậy hàm số \(\left(1\right):y=2x+1\)

Bạn tự vẽ đồ thị nhé!

2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)

Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi

\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài

3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:

\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow0m=1\)

\(\Leftrightarrow m\in\varnothing\)

Vậy không có giá trị nào của m để thỏa mãn đề bài,

Bình luận (0)
NL
5 tháng 9 2023 lúc 21:19

Đáp án:

1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy

Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.

Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:

[Image of the graph of y=-2x+1]

2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =

Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.

3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5

Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:

 

d=|m|

Do đó, ta có d=2552=2.

Từ đó, ta có m=2.

Kết luận:

Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2. Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2. Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.

Lưu ý:

Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =. Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

chúc bạn học tốt

Bình luận (0)
NH
5 tháng 9 2023 lúc 21:28

Cảm ơn em đã tham gia hỏi đáp olm.

Trong câu trả lời của Nguyễn Bảo Long là câu coppy chat gpt.

Lần này cô nhắc nhở, lần sau cô xử phạt 

Bình luận (0)
H24
Xem chi tiết
TM
5 tháng 9 2023 lúc 21:15

1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:

\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)

 

2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)

 

3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).

Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)

Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).

Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).

 

Bình luận (0)
NM
Xem chi tiết
NA
Xem chi tiết
NT
19 tháng 8 2018 lúc 13:08

câu hỏi xàm xàm

Bình luận (0)
LM
25 tháng 12 2019 lúc 15:28

dit me may

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 1 2020 lúc 17:53

a) Để hàm số trên đồng biến 

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)

Vậy \(m>1\)

b) Vì hàm số \(y=\left(m-1\right)x+26\)đi qua \(A\left(1;-2\right)\)

\(\Rightarrow\left(m-1\right).1+26=-2\)

\(\Rightarrow m-1=-2-26\)

\(\Rightarrow m-1=-28\)

\(\Rightarrow m=-27\)

\(\Rightarrow y=\left(-27-1\right)x+26\)

\(\Rightarrow y=-28x+26\)

Lập bảng giá trị:

\(x\)\(1\)\(1,2\)
\(y=-28x+26\)\(-2\)\(-7,6\)

\(\Rightarrow\)Đths \(y=\left(m-1\right)x+26\)là một đường thẳng đi qua \(\left(1;-2\right);\left(1.2;-7,6\right)\)

Thế là vẽ được cái đồ thị (có dạng y=ax+b thì là một đường thẳng ko đi qua gốc tọa độ)

c) Em chưa học ạ :>

P/s: Câu b em chưa chắc, nếu để số thập phân thế thì chia khó :<, chị kt em nhé

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
16 tháng 12 2023 lúc 13:46

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

Bình luận (0)
NK
Xem chi tiết
NN
26 tháng 4 2016 lúc 16:12

Ta có : \(y'=3x^2-2\left(m-1\right)x+3m+1\)

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm, ta có : \(x_0=1\Rightarrow y_0=3m+1,y'\left(1\right)=m+6\)

Phương trình tiếp tuyến tại M  : \(y=\left(m+6\right)\left(x-1\right)+3m+1\)

Tiếp tuyến đi qua A \(\Leftrightarrow-1=m+6+3m+1\Leftrightarrow m=-2\)

Vậy m = -2 là giá trị cần tìm

Bình luận (0)
H24
Xem chi tiết
KY
23 tháng 6 2021 lúc 22:07

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

Bình luận (0)
KY
23 tháng 6 2021 lúc 22:04

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

Bình luận (0)
NH
23 tháng 6 2021 lúc 22:10

1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

2. để đi qua điểm (1;-4),

\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)

3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)

tọa độ điểm cố định là nghiệm của hpt

\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

đ cđịnh M(-1;4)

4. \(y=\left(m-1\right)x+m+3\)

+ Khi x=0, y=m+3

+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)

Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

 

Bình luận (1)