Chứng minh \(^{\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\left(a+b\right)=a^5b^5}\)
Cho \(\left(a+b\right)\left(2b-a-4\right)=\left(a-2b\right)\left(5-a-b\right)\). Tính \(\frac{2a^2-3b^2}{ab+b^2}\)
1) Rút gọn :
\(B=\frac{\left(a+2b\right)^3-\left(a-2b\right)^3}{\left(2a+b\right)^3-\left(2a-b\right)^3}:\frac{3a^4+7a^2b^2+3b^4}{4a^4+7a^2b^2+3b^4}\)
Thực hiện phép tính\(\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\left(a-b\right)\)
c/m bất đảng thức :
a)\(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\)
b)\(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
c)\(\dfrac{a}{2b}+\dfrac{2b}{a+b}\)+\(\dfrac{ab^2}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
d)\(\dfrac{a}{4b^2}+\dfrac{2b}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+2b\right)}\)
e)\(\dfrac{2}{a^2+ab+b^2}+\dfrac{1}{3b^2}\ge\dfrac{9}{\left(a+2b\right)^2}\)
bn vô câu hỏi tương tự có hết nhé
Đây nha :)) \(\Sigma_{cyc}\) là tổng đối xứng;\(\Sigma_{sym}\) là tổng hoán vị nhen :D
Ta có:\(a^5-b^5=\left(a-b\right)\left(a^4+a^3b+ab^3+a^2b^2+b^4\right)\Rightarrow\frac{a^5-b^5}{a-b}=a^4+a^3b+ab^3+a^2b^2+b^4\)
Khi đó \(S=2\left(a^4+b^4+c^4\right)+\Sigma_{cyc}a^2b^2+\Sigma_{sym}a^3b\)
Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\)
Theo Viet bậc 3 ( dùng HSBĐ chứng minh ) thì ta sẽ có \(a+b+c=\frac{9}{2};ab+bc+ca=3;abc=\frac{1}{2}\)
Mặt khác:\(a^4+b^4+c^4=p^4-4p^2q+2q^2+4pr;\Sigma_{cyc}a^2b^2=q^2-2pr;\Sigma_{sym}a^3b=p^2q-2q^2-pr\)
Ố kề,đến đây thay vào tính là xong nha :)) Không biết nhầm chỗ não không ._.
mình không biết dù là tiêng việt lớp1
chúc bạn học giỏi
chúc bạn nhe
bạn CTV
wdf tiếng việt lớp 1 a
Chứng minh rằng với mọi \(a,b\in R\), ta có:
\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)
Ta có a4 + b4 - a3 b - ab3 = (a - b)(a3 - b3)
= (a -b)2 (a2 + ab + b2)
= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)
Ta lại có a4 + b4 \(\ge2a^2b^2\)
Từ đó => 2(a4 + b4) \(\ge\)ab3 + a3 b + 2 a2 b2
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)
c)
VT=(a+b)(a3-a2b+ab2-b3)=a4-a3b+a2b2-ab3+a3b-a2b2+ab3-b4 =a4-b4=VP
=> Đpcm
d) VT=(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3 khác VT
=> đẳng thức ko đúng
Cho các số thực dương a, b thỏa mãn \(2a+3b=2019\)
Chứng minh rằng : \(\sqrt{ab+2a+2b+4}+\sqrt{\left(2a+2\right)b}\le1012\)
Đặt vế trái của BĐT là P:
\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)
\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)
\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)
Dấu "=" không xảy ra
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)