1) Rút gọn :
\(B=\frac{\left(a+2b\right)^3-\left(a-2b\right)^3}{\left(2a+b\right)^3-\left(2a-b\right)^3}:\frac{3a^4+7a^2b^2+3b^4}{4a^4+7a^2b^2+3b^4}\)
Thực hiện phép tính\(\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\left(a-b\right)\)
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
\(\text{Chứng minh:}\)
\(\left(a^3+a^2b+ab^2+b^3\right)\left(a-b\right)=a^4-b^4\)
thực hiện phép nhân
a) \(\left(X+1\right)\left(1+X-X^2+X^3-X^4\right)-\left(X-1\right)\left(1+X+X^2+X^3+X^4\right)\)
B) \(\left(2b^2-2-5b+6b^3\right)\left(3+3b^2-b\right)\)
c) \(\left(2ab+2a^2+b^2\right)\left(2ab^2+4a^3-4a^2b\right)\)
d) \(\left(2a^3-0,02a+0,4a^5\right)\left(0,5a^6-0,1a^2+0,03a^4\right)\)
\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Tính:
a, \(N=8a^3-27b^3\)biết ab=12 và 2a-3b=5
b, \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)biết a+b=1
c, \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)biết xy=4 và x+2y=8