Những câu hỏi liên quan
PB
Xem chi tiết
GW
Xem chi tiết
LT
Xem chi tiết
NV
Xem chi tiết
NT
17 tháng 12 2022 lúc 12:35

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

Bình luận (0)
H24
Xem chi tiết
H24

\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)

\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)

Đặt \(x^2-9x+14=y\)

\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)

\(\Leftrightarrow A=y^2-36+2002\)

\(\Leftrightarrow A=y^2+1966\ge1966\)

Dấu "=" xảy ra khi

 \(x^2-9x+14=0\)

\(\Leftrightarrow x=2,7\)

Bình luận (0)
XT
Xem chi tiết
HH
4 tháng 8 2017 lúc 8:17

a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)

b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)

=(x^2-4x)(x^2-4x+3)

Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4

Dấu= xảy ra khi t=-3/2 >>>tìm x

Bình luận (0)
SB
Xem chi tiết
TH
12 tháng 1 2021 lúc 16:15

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

Bình luận (0)
TH
12 tháng 1 2021 lúc 16:13

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).

Bình luận (0)
NL
12 tháng 1 2021 lúc 17:26

Câu a muốn có min thì đề bài phải là \(x\ge4\) (có dấu "=")

Còn \(x>4\) thì chắc là đề sai

Bình luận (0)
TL
Xem chi tiết
NT
16 tháng 12 2022 lúc 13:06

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

Bình luận (0)
H24
16 tháng 12 2022 lúc 13:08

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

Bình luận (0)
HW
Xem chi tiết
PQ
16 tháng 4 2018 lúc 17:21

Ta có : 

\(B=\left|x-2\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)

\(B=\left(\left|x-2\right|+\left|x-5\right|\right)+\left(\left|x-3\right|+\left|x-4\right|\right)\)

\(B=\left(\left|x-2\right|+\left|5-x\right|\right)+\left(\left|x-3\right|+\left|4-x\right|\right)\)

+) Đặt \(A=\left|x-2\right|+\left|x-5\right|\)

Áp dụng BĐT giá trị tuyệt đối ta có : 

\(A=\left|x-2\right|+\left|5-x\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)

Dấu "=" xảy ra khi và chỉ khi  \(\left(x-2\right)\left(5-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le5\end{cases}\Leftrightarrow}2\le}x\le5\)

TH2 : \(\hept{\begin{cases}x-2\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge5\end{cases}}}\) ( loại ) 

+) Đặt \(C=\left|x-3\right|+\left|x-4\right|\)

Áp dụng BĐT giá trị tuyệt đối ta có : 

\(C=\left|x-3\right|+\left|x-4\right|=\left|x-3\right|+\left|4-x\right|\ge\left|x-3+4-x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(4-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}}\Leftrightarrow3\le x\le4}\)

TH2 : \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}}\) ( loại ) 

Để B đạt GTNN thì A và C cũng đồng thời đạt GTNN 

Suy ra : GTNN của \(B\ge A+C=3+1=4\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}2\le x\le5\\3\le x\le4\end{cases}\Leftrightarrow3\le x\le4}\)

Vậy GTNN của \(B=4\) khi \(3\le x\le4\)

Chúc bạn học tốt ~ 

Bình luận (0)