Phân tích đa thức thành nhân tử:
x^2 + 2xy - 8y^2 + 2xz + 14yz - 3z^2
x^4 - 13x^2 + 16
Phân tích đa thức thành nhân tử:
34x4 + 1
x4 + 4y4
x2+2xy-8y2+2xz+14yz-3z2
mn giúp mk vs mai mk phải nộp bài òi
Phân tích đa thức thành nhân tử
1) 32X^4+1
2)X^8+3x^4+1
3)x^2+2xy-8y^2+2xz+14yz-3z^2
4)3x^2-22xy-4x+8y+7y^2+1
5)12x^2+5x-12y^2+12y-10xy-3
6)2x^2-7xy+3y^2+5xz-5yz+2z^2
7)x^2+3xy+2y^2+3xz+5yz=2z^2
8)x^2-8xy+15y^2+2x-4y-3
9)x^4-13x^2+36
10)4(x^2+15x+50)(x^2+18x+72)-3x^2
Phân tích đa thức thành nhân tử:
1, (x+y)^7-x^7-y^7
2, x^4+4x^2+5
3, x^2+2xy-8y^2+2xz+14yz-3z^2
4, 3x^2-22xy-4x+8y+7y^2+1
5, 12x^2+5x-12y^2+12y-10xy-3
6, 2x^2-7xy+3y^2+5xz-5yz+2z^2
7, x^2+3xy+2y^2+3xz+5yz+2z^2
8, x^2-8xy+15y^2+2x-4y-3
Phân tích đa thức thành nhân tử
a) \(x^2+2xy-8y^2+2xz+14yz+3z^2\)
b) \(3x^2-22xy-4x+8y+7y^2+1\)
c)\(12x^2+5x-12y^2+12y-10xy-3\)
d) \(2x^2-7xy+3y^2+5xz-5yz+2z^2\)
e) \(x^2+3xy+2y^2+3xz+5yz+2z^2\)
phân tích đa thức thành nhân tử:
x^3-y^3+2x^2+2xy
Đa thức này ko phân tích thành nhân tử được
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a.2x^2-4x-8y^2+2
b.16+2xy-x^2-y^2
c.x^2-4+3.(x-2)^2
d.x^4+2x^2-15
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
Phân tích đa thức sau thành nhân tử:
x^2/4+2xy+4y^2
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
Phan tich thanh nhan tu:
\(x^2+2xy-8y^2+2xz+14yz-3z^2\)
\(x^2+2xy-8y^2+2xz+14yz-3z^2\)
\(=\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(-9x^2+12yz-4x^2\right)\)
\(=\left(x+y+z\right)^2-\left[\left(3x\right)^2-2.3x.2y+\left(2x\right)^2\right]\).
\(=\left(x+y+z\right)^2-\left(3y-2x\right)^2\)
\(=\left(x+y+z-3y+2x\right)\left(x+y+z+3y-2x\right)\)
Phân tích đa thức thành nhân tử:
x^4 - x^2 + 2x + 2
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(x^4-x^2+2x+2\)
\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=\left(x+1\right)\left(x^3-x^2+2\right)\)