3^8x+4=81x+3
d) -x^3+8x^2-12x+8 ; e) 27x^3+81x^2+81x+27
d,Sửa đề
\(-x^3+6x^2-12x+8\)
\(=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-3.x^2.2+3.x.2^2-2^3\right)\)
\(=-\left(x-2\right)^3\)
\(e,27x^3+81x^2+81x+27\)
\(=27\left(x^3+3x^2+3x+1\right)\)
\(=27\left(x+1\right)^3\)
giải pt :
a, \(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
b, \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
c,\(\sqrt[3]{x-2}=8x^3-60x^2+151x-128\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
c.
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)
Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)
\(\Leftrightarrow\left(2x-5\right)^3=x-2\)
\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)
17) 8x3 + 27
18) a6 - 1
19) 2x3 - 1
20) 9x4 - 81x2
17) \(8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2-6x+9\right)\)
18) \(a^6-1=\left(a^3\right)^2-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a^2+a+1\right)\left(a+1\right)\left(a^2-a+1\right)\)
20) \(9x^4-81x^2=9\left(x^4-9x^2\right)=9x^2\left(x^2-9\right)=9x^2\left(x-3\right)\left(x+3\right)\)
17)
\(8x^3+27=\left(8x\right)^3+3^3=\left(8x+3\right)\left(64x^2-24x+9\right)\)
18)
\(a^6-1=\left(a^3\right)^2-1\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=\left(a-1\right)\left(a^2-a+1\right)\left(a+1\right)\left(a^2+a+1\right)\)
19)
đề sao sao ý
20)
\(=\left(3x^2\right)^2-\left(9x\right)^2\)
\(=\left(3x^2-9x\right)\left(3x^2+9x\right)\)
\(=3x\left(x-9\right)3x\left(x+9\right)=9x^2\left(x-9\right)\left(x+9\right)\)
1)x3+8x2+17x+10
2) 2x3-3x2+3x-1
3) x4+x2+1
4) 81x4+4
m.n giúp mik với, tks( PTĐTTNT)
1, \(x^3+8x^2+17x+10=\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)\(=\left(x+1\right)\left(x^2+7x+10\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
2. \(2x^3-3x^2+3x-1=\left(2x^3-x^2\right)-\left(2x^2-x\right)+\left(2x-1\right)\)
\(=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-x+1\right)\)
3. \(x^4+x^2+1=\left(x^4+1\right)+x^2=\left(x^2+1\right)^2-2x^2+x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4. \(81x^4+4=\left(9x^2\right)^2+2^2=\left(9x^2+2\right)^2-2.9x^2.2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+6x+2\right)\left(9x^2-6x+2\right)\)
Phân tích các đa thức sau thành nhân tử :
1) 9x^2 +6x -575
2) 81x^4 + 4
3) (x^2 + 8x +7)(x^2 +8x +15) + 15
4) (4x +1 )(12x - 1)(3x+2)(x+1)-4
5) x^3 + x^2 -10x +8
Giúp mình với nha....
1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)
2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:
t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)
=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)
tạm thế này đã, phải đi ăn cơm rồi :v
Giups hộ cj My :))
4 ) Đặt \(12x^2+11x-1=a\)
\(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(a-3\right)a-4=a^2-3a-4=a^2-4a+a-4=a\left(a-4\right)+\left(a-4\right)\)
\(=\left(a+1\right)\left(a-4\right)=\left(12x^2+11x\right)\left(12x^2+11x-5\right)=x\left(12x+11\right)\left(4x+5\right)\left(3x-1\right)\)
1.phân tích đa thức thành nhân tử
a) x^3 + 3x^2 + 3x + 1 - 27z^3
b) 81x^4 + 4
2.tìm x
a) 8x^3 - 50x = 0
b) (x + 9)^2 + 2.(x + 9).(x - 3) + (x - 3)^2 = 0
Phân tích đa thức thành nhân tử:
a) 2x3-5x2+8x-3 (Nhẩm nghiệm)
b) 3x3-14x2+4x+3 (Nhẩm nghiệm)
c) 81x4+2 (Thêm bớt hạng tử)
a/ 2x3 ‐5x2 + 8x ‐3
= 2x3 ‐x2 ‐4x2 +2x +6x ‐3
= x2 (2x‐1) ‐ 2x(2x‐1) + 3.(2x‐1)
= (x2‐2x+3) (2x‐1)
b/ 3x3 ‐ 14x2 +4x +3
= 3x3 +x2 ‐15 x2 ‐5x +9x +3
= x2(3x+1) ‐5.x (3x+1) +3. (3x+1)
= (x2 ‐5x+3) (3x+1)
Phân tích đa thức thành nhân tử
(4x+5)^2-(x-2)^2
16x^4-y^4
27x^3-1
81x^2y^2-25
x^3-x
8x(x+y)-x-y
8x(x+y)-x-y=(8x-1)(x+y)
x^3 - x= x(x^2 -1)
81x^2y^2 -25= (9xy)^2 -5^2 = (9xy-5)(9xy+5)
27x^3 -1 = (3x)^3 -1 = (3x-1)(9x+3x+1)
\(81x^2y^2-25=\left(9xy-5\right)\left(9xy+5\right)\)
\(x^3-x=x\left(x-1\right)\left(x+1\right)\)
\(8x\left(x+y\right)-x-y=\left(x+y\right)\left(8x-1\right)\)
Phân tích các đa thức sau thành nhân tử:
a, x^3 - x^2 - 8x +12
b, x^3 -4x^2 - 11x +30
c, 8x^2 +10x -3
d, 8x^2 -2x -1
e, x^3 +x -2
f, x^3 +3x^2 -4
g, x^3 y^3+x^2 y^2+4
h,x^3-2x-1
l,4x^4+y^4
k,x^5+x^4+1
m, 64x^4+y^4
n,81x^4+4
i, x^8+14x^4+1
p, a^3+b^3+c^3-3abc
q, x(x+4)(x+6)(x+10)+128
r, (2017x-1)^3-(2018x^3-2019)^3+(2018x^3-2017x-2018)^3