a^4+b^4+c^4=2a+12b+6c-14
Chứng minh rằng với mọi a,b,c ta có a2+4b2+3c2>2a+12b+6c-14
\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)
\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)
mà \(2a+12b+6c-13>2a+12b+6c-14\)
\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)
\(\Rightarrow dpcm\)
Giải giùm mig bài này:
Chứng minh: a^2+4b^2+3c^2+14>2a+12b+6c;với mọi a,b,c thuộc R
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề
Số cộng lại có đủ 14 ko z bạn
Chứng minh : \(a^2+4b^2+3c^2>2a+12b+6c-14\)
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng
Cho a,b,c ∈ R chứng minh rằng : a2+4b2+3c2+14≥ 2a+12b+6c
Giúp mình mấy câu Cô si này với khó hiểu cực :((
\(a^2+4b^2+3c^2+14\ge2a+12b+6c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)+1\ge0\)
BĐT \(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi : \(\left\{{}\begin{matrix}a-1=0\\2b-3=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\frac{3}{2}\\c=1\end{matrix}\right.\)
Vậy ....
Tìm a,b,c, biết:
2a+7/5=3b-3/4=c+5/3 và 4a+12b-3c=64
\(\frac{2a+7}{5}=\frac{3b-3}{4}=\frac{c+5}{3}\)
=> \(\frac{4a+14}{10}=\frac{12b-12}{16}=\frac{3c+15}{9}=\frac{4a+14+12b-12-3c-15}{10+16-9}\)
\(=\frac{\left(4a+12b-3c\right)-13}{17}=\frac{64-13}{17}=3\)
=> \(\hept{\begin{cases}2a+7=15\\3b-3=12\\c+5=9\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=5\\c=4\end{cases}}\)
Vậy a = 4 ; b = 5 ; c = 4
cho 2 đa thức
A(X) = 5X^4-5 + 6X^3 +X^4 -5X^-12
B(X) = 8X^4 +2X^3 -2X^4+4X^3 -5X -15 -2X^2
a) thu gon A (X) , B(X) VÀ sắp xếp các đa thức theo thứ tự giảm dần
b) tìm nghiệm của đa thức C(x) , biết C(X) = A(X)-B(X)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
Câu 4: Kết quả của =Min(2,6,-20) là
A-12
B 6
C 2
D -20
Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến:
B= (2a - 3)(2a + 3) - a(3 + 4a) + 3a +1;
C = (4 - c)(4 - c) + (2 - c)c + 6c + 2002.
a) Thu gọn B = -8; b) Thu gọn C = 2018.
1/Tính giá trị của biểu thức:
B=2a/5b+5b/6c+6c/7d+7d/2a biết 2a/5b=5b/6c=6c/7d=7d/2c (a,b,c,d<>0)
2/Cho:
C=4/7*31+6/7*41+9/10*41+7/10*57
D=7/19*31+5/19*43+3/23*43+11/23*57
Tính C/D
3/So sánh hợp lí:
A=-7772/-7778;B=-88881/88889
4/Chứng minh:
P=75*(4^2004+4^2003+...+4^2+4+1)+25 chia hết cho 100
5/Tìm x,y biết:
x*(x-y)=3/10 và y*(x-y)=-3/50
Ai giải được nhớ giải chi tiết và cho mình biết kết quả trước ngày 7/4 thì mình cho 5 tick còn sau thì 2 tick.thanks