Cho x,y,z là các số thực dương. Chứng minh:
25x/(y+z) + 4y/(z+x) + 9z/(x+y) >= 12
Cho 3 số thực dương x;y;z . Chứng minh:
\(\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}>12\)
1 mảnh đất HCN có chu vi là 120m,có chiều rộng bằng \(\frac{3}{5}\)chiều dài.
a Tính diện tích mảnh đất đó
b Người ta chia mảnh vườn thành 2 khu.Biết\(\frac{1}{2}\)
diện tích trồng cây ăn quả bằng \(\frac{2}{5}\)diện tích khu trồng hoa.Tính diện tích mỗi khu.
ĐẶt \(A=\frac{25x}{y+z}+25+\frac{4y}{z+x}+4+\frac{9z}{x+y}+9\)
\(A=\left(x+y+z\right)\left(\frac{25}{y+z}+\frac{4}{z+x}+\frac{9}{x+y}\right)\)
Chứng minh Bất đẳng thức phụ \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\forall a,,b,c>0\)rồi áp dụng, ta có
\(A\ge\left(x+y+z\right)\frac{\left(5+2+3\right)^2}{2\left(x+y+z\right)}=50\)
\(\Rightarrow\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}\ge12\forall x,y,z>0\)
Cho x,y,z là các số thực dương .Chứng minh rằng
P=\(\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}>12\)
Đặt \(a=y+z,b=z+x,c=x+y\) (với a > 0, b > 0, c> 0)
\(\Rightarrow x=\frac{b+c-a}{2},y=\frac{c+a-b}{2},z=\frac{a+b-c}{2}\). Ta có
\(VT\) \(P=\frac{25\left(b+c-a\right)}{2a}+\frac{4\left(c+a-b\right)}{2b}+\frac{9\left(a+b-c\right)}{2c}\)\(=\left(\frac{25b}{2a}+\frac{4a}{2b}\right)+\left(\frac{25c}{2a}+\frac{9a}{2c}\right)+\left(\frac{4c}{2b}+\frac{9b}{2c}\right)-19\ge10+15+6-19=12\)
Đẳng thức xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}5b=2a\\5c=3a\end{matrix}\right.\)
\(\Rightarrow5b+5c=5a\Rightarrow x=0\left(vôlis\right)\)
Vậy BĐT P đúng
cho x,y,z là các số thực dương.Chứng minh \(\frac{25x}{y+z}+\frac{4y}{z+x}+\frac{9z}{x+y}>12\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
Do xyz=1. nên bđt cần chứng minh tường đương với
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)
Theo BĐT Bunhiacopsky ta có:
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)
Do vậy ta cần cm
\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)
BĐT trên là tổng của 3 BĐT sau:
\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)
\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)
\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)
ta có bđt trên tương đương với
\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)
Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm
dấu "=" xảy ra khi x=y=z=1
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng 1/x+y + 1/y+z + 1/z+x < 1/4x + 1/4y + 1/4z + 9/4
Cho \(x;y;z\) là các số thực dương . Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Áp dụng BĐT cosi cho 3 số x;y;z dương
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)
Cộng vế theo vế
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)
\(\LeftrightarrowĐpcm\)
Cho x,y,z là các số thực dương. chứng minh rằng:
\(\dfrac{xy^2\left(x+z\right)}{x+y}+\dfrac{yz^2\left(z+x\right)}{y+z}+\dfrac{zx^2\left(x+y\right)}{z+x}\ge3xyz\)
\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)
Cho x,y,z là các số thực dương thỏa: x+y+z=1. Tìm gtnn M= 1/16+1/4y+1/z