§1. Bất đẳng thức

PO

Cho \(x;y;z\) là các số thực dương . Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)

NM
2 tháng 10 2021 lúc 10:18

Áp dụng BĐT cosi cho 3 số x;y;z dương

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)

Cộng vế theo vế 

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)

\(\LeftrightarrowĐpcm\)

Bình luận (7)
PO
8 tháng 10 2021 lúc 20:36

Thầy Ngô Văn Thái undefined

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
HC
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết