cmr 2 2^2 2^3 ... 2^60 chia hết cho 3,5,7
cho A=2+2^2+...+2^26 . CMR A chia hết cho 3,5,7
\(A=2\left(1+2\right)+...+2^{25}\left(1+2\right)=3\left(2+...+2^{25}\right)⋮3\)
A không chia hết cho 5 và 7 nhé bạn
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
CMR : A=2+2^2+2^3+...+2^60 chia hết cho 21
góp 3 cái vào với nhau là chia hết cho 7 r
còn chia hết cho 21 thì tớ chưa nghĩ ra
CMR : C = 2+2^2+2^3+.....+2^60 chia hết cho 3, 7 và 15
Cho A = 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 60 . CMR A chia hết cho 3; 7 và 15
cho A= 2+2 mũ 2+ 2 mũ 3+...+2 mũ 60
cmr: A chia hết cho 6
\(A=2+2^2+2^3+\dots+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+\dots+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+\dots+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+\dots+2^{58})\)
Vì \(6\cdot(1+2^2+2^4+\dots+2^{58})\vdots6\)
nên \(A\vdots6\)
cho A=2+2^2+2^3+...+2^60
CMR: A chia hết cho 15
A=2+2^2+2^3+...+2^60
A=(2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^60)
A=15.2^0+....+15.2^56
A=15.(2^0+2^4+...+2^56) chia hết cho 15
Vậy A chia hết cho 15
Cho A = 2+22+23+24+...+258+259+260. CMR: a) A chia hết cho 3, b) A chia hết cho 7, c) A chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
cho a,b,c thuộc N : a^2 +b^2= c^2. CMR: abc chia hết cho 3 và abc chia hết cho 60
ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60