HT

cmr 2 2^2 2^3 ... 2^60 chia hết cho 3,5,7

H9
3 tháng 8 2023 lúc 9:45

Đặt: \(S=2+2^2+2^3+...+2^{60}\)

\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(S=3\cdot\left(2+2^3+...+5^{59}\right)\)

Vậy S chia hết cho 3

________________________

\(S=2+2^2+2^3+...+2^{60}\)

\(S=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

\(S=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)

\(S=5\left(2+2^2+....+2^{58}\right)\)

Vậy S chia hết cho 5 

___________________________

\(S=2+2^2+2^3+...+2^{60}\)

\(S=2\left(1+2+2^2\right)+2^2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(S=7\cdot\left(2+2^2+...+2^{58}\right)\)

Vậy  S chia hết cho 7

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
RC
Xem chi tiết
LP
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết