Những câu hỏi liên quan
TN
Xem chi tiết
NL
2 tháng 7 2020 lúc 15:26

\(F=\left(a+b\right)^3-3ab\left(a+b\right)+2ab+2+a+\frac{2a+3b}{ab}\)

\(=8-6ab+2ab+2+a+\frac{b+4}{ab}\)

\(=10-4ab+a+\frac{1}{a}+\frac{4}{ab}\)

\(F\ge10-\left(a+b\right)^2+2\sqrt{\frac{a}{a}}+\frac{4}{\frac{1}{4}\left(a+b\right)^2}=12\)

\(F_{min}=12\) khi \(a=b=1\)

Bình luận (0)
TH
Xem chi tiết
NT
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Bình luận (0)
TN
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

Bình luận (0)
NB
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
PD
Xem chi tiết
DT
19 tháng 7 2016 lúc 16:40

a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)

=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)

Dấu "=" xảy ra khi: a=b

Vậy GTNN của N là 9/2 tại a=b

b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)

<=>(a+b)2-2ab\(\ge\frac{9}{2}\)

<=>\(9-2ab\ge\frac{9}{2}\)

<=>\(2ab\le\frac{9}{2}\)

<=>\(ab\ge\frac{9}{4}\)

<=>\(ab+2\le\frac{17}{4}\)

Dấu "=" xảy ra khi a=b

Vậy GTLN của P là 17/4 tại a=b

Bình luận (0)
H24
Xem chi tiết
DB
Xem chi tiết
H24
9 tháng 6 2016 lúc 22:26

Có \(2a+2b-3\ge2\sqrt{2a.2b}-1=1\)(vì ab=1)
\(\Rightarrow F\ge a^3+b^3+\frac{7}{\left(a+b\right)^2}\)

Bình luận (0)
DB
9 tháng 6 2016 lúc 22:33

bạn giải giúp mình luôn phần sau di :((

Bình luận (0)
PK
Xem chi tiết
PK
Xem chi tiết
PA
Xem chi tiết
CM
12 tháng 4 2016 lúc 20:34

a,có (a2+2ab+b2=4   a2-2ab+b2>=0

công 2 vế đc2(a^2+b^2)>=4=>a^+b^2>=2

Bình luận (0)