NA

tìm giá trị nhỏ nhất của F=a^3+b^3+(a+b)ab+2a+b+3/a+2/b, biết a+b=2 và a,b>0. mong mn giúp ạ

DH
9 tháng 5 2021 lúc 15:45

\(F=a^3+b^3+ab\left(a+b\right)+2a+b+\frac{3}{a}+\frac{2}{b}\)

\(F=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)+a+b+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

\(F=8-4ab+2+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

Ta có: \(\left(a+b\right)^2\ge4ab\Leftrightarrow-4ab\ge-\left(a+b\right)^2=-4\)

\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)

\(\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}=4\)

Suy ra \(F\ge8-4+2+2+4=12\)

Dấu \(=\)xảy ra khi \(a=b=1\).

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PA
Xem chi tiết
CB
Xem chi tiết
AM
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết
MN
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết